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How does Artificial Intelligence (AI) affect local and aggregate labor markets?

I show that US commuting zones with higher AI adoption experienced stronger

declines in employment and wage. The distributional impact is similar as routine-

biased technological change. However, local estimates only identify relative effects

and may differ from aggregate effects. To infer the latter, I quantify a general equi-

librium multi-region model with technology adoption disciplined by local estimates.

Depending on AI cost savings, one firm adopting AI out of every thousand changes

the employment-to-population ratio by -0.20 to 0.15 percentage points and wage by

-0.8 to 1.0 percent.
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1 Introduction

The rapid and ongoing development in Artificial Intelligence (AI) since the last decade,

and in particular the advent of generative AI technologies such as ChatGPT or DeepSeek

since November 2022, have spurred much debate on the labor market implications of AI.

A natural question arises: how does AI affect employment? Theoretically, the answer is

ambiguous (Acemoglu and Restrepo (2019), Webb (2020), Acemoglu (2025)). On the one

hand, AI can expand the set of automatable tasks, thereby displacing workers. On the

other hand, AI can boost productivity and income, thereby increasing labor demand in

non-automated tasks. AI can also create new tasks and jobs such as machine learning

engineer, data engineer, or data scientist. While most research tackle this question at the

establishment, firm, or individual level (Acemoglu et al. (2022b), Copestake et al. (2023),

Hui et al. (2023), Abis and Veldkamp (2024), Babina et al. (2024), Hampole et al. (2025),

Jiang et al. (2025)), this paper focuses on macro-level effects.

In this paper, I study the effect of AI on local labor markets and the aggregate US

economy. Throughout the paper, I define AI as any of the following five technologies:

machine learning, machine vision, natural language processing, voice recognition soft-

ware, and automated-guided vehicles (AGVs) (McElheran et al. (2024)). I ask three main

questions: (i) how do changes in the overall employment-to-population ratio and the av-

erage wage in high AI exposure commuting zones compare with those in low AI exposure

commuting zones during 2010-2021?1 (ii) is the employment effect unequally distributed

across population subgroups? (iii) what do the relative regional estimates of the employ-

ment and wage effects imply for the aggregate effects in the US economy? Aggregate

effects can be different from relative regional effects, as the former takes into account

national general equilibrium effects such as aggregate income effect and sectoral/regional

reallocation, which are differenced out in cross-regional regressions.

To answer the three questions, I first exploit variations in AI adoption across US com-

muting zones using a shift-share instrumental variable approach to estimate the labor

market effects of high AI exposure commuting zones relative to low AI exposure commut-

ing zones. I then develop and calibrate a general equilibrium multi-region model to infer

1The main period of analysis is 2010-2021. Therefore, the paper does not focus on generative AI due to

the recency of generative AI technology and limited data availability. However, the framework developed

in this paper can be easily applied to assess the effects of generative AI when more data become available.
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the aggregate implications of AI. The model delivers a structural relationship between

AI exposure and changes in employment or wage across regions. The relative regional

estimates from the empirical analysis are used to discipline model parameters. Due to the

recency of technological change and data availability, the analysis so far does not extend

beyond 2022. However, the paper offers a tractable framework to gauge the aggregate

labor market effects of AI using only publicly available data. The framework presented

in this paper can therefore be applied to assess the aggregate impact of future waves of

technological change and in other countries, as long as local labor markets and industry-

level AI adoption rates data are available.

There are two key empirical challenges in the cross-regional estimation. First, data on

AI adoption at the commuting zone level is scarce. To address this, I construct a mea-

sure of AI exposure for US commuting zones, combining 2010 local employment shares

with nationwide AI adoption data from the Annual Business Survey (ABS) Technology

module. The second challenge is the endogeneity of AI exposure. Unobserved positive

local demand shocks may induce firms to adopt AI and demand more workers, leading to

an upward bias in the OLS estimates. Moreover, AI adoption is likely to be anticipated

or dependent on previous technologies. Commuting zones that have adopted more ICT,

software, and robotics are also more likely to adopt AI. If anticipation or past technologies

affect labor market outcomes, using local industry specialization patterns after the ICT

revolution for AI exposure can suffer from simultaneity bias.

To address these endogeneity concerns, I instrument the AI exposure measure using

local employment share in 1990 and industry-level AI adoption in the EU, under the

reasonable assumption that ICT only started to proliferate since the second half of 1990s

(Colecchi and Schreyer (2002)). I also use 1995 local employment share and average local

employment share in 1990-1995 to compute the IV as robustness checks. EU industry-

level AI adoption allows to capture global technological advances and isolate US-specific

factors. For example, idiosyncratic US-specific factors such as positive US-specific indus-

try demand shocks can increase both AI adoption and local labor demand, resulting in

a positive bias of the simple OLS estimate. The first-stage F-statistic shows that the

instrument is relevant. Furthermore, I control for a comprehensive set of initial commut-

ing zone characteristics and commuting zone exposures to the concurrent labor market

shocks of robotization and import competition. I perform falsification tests that regress

past changes in overall employment-to-population ratio and average wage in 1980-2010
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on AI exposure in 2010-2021. Results indicate that long-run common factors are unlikely

to drive both the changes in labor market outcomes and AI adoption.

I find that commuting zones with a higher share of AI-adopting firms have experienced a

stronger decline in the overall employment-to-population ratio and average wage during

2010-2021. The estimates suggest that a one standard deviation increase in AI exposure in

the local labor market leads to 0.976 percentage points lower employment-to-population

and 2.34% lower wage. Furthermore, the estimated effect implies that employment-to-

population in commuting zones at the 75th percentile of AI exposure declines by 1.25

percentage points more than in commuting zones at the 25th percentile of AI exposure,

and average wage declines by 3% more.

The negative effect is heterogeneous. It is primarily borne by the manufacturing and

low-skill services sectors, middle-skill workers, non-STEM occupations, and individuals

at the two ends of the age distribution. The adverse impact is also more pronounced

on men than women. These unequal effects of AI are similar as previous waves of labor

market shocks, such as routine-biased technological change (RBTC) (Autor et al. (2006),

Goos et al. (2014) for skill group), offshoring (Goos et al. (2014) for skill group), indus-

trial robots usage (Acemoglu and Restrepo (2020) for skill group and gender), and import

competition (Traiberman (2019) for age). These findings may appear surprising, as high-

skill occupations are more exposed to AI, and these occupations were largely insulated

from previous shocks such as RBTC or offshoring (Webb (2020), Eloundou et al. (2023),

Cazzaniga et al. (2024), Huang (2025)). However, higher exposure does not imply lower

employment. Employment or hours worked can increase if AI complements human labor

(Cazzaniga et al. (2024), Jiang et al. (2025)) or if the dispersion of task exposure to AI

within an occupation is high (Hampole et al. (2025)). For policymakers, these findings

underscore the unequal distributional consequences of labor market shocks and the need

for social safety nets and job retraining programs. The main findings are robust across

several alternative specifications, such as using alternative definition of US industry-level

AI adoption, constructing AI exposure measure and its IV with local employment shares

in alternative years, and using 2019 as the end year to address concerns about the poten-

tial employment impact of Covid-19.

However, local labor market estimates only identify relative effects, as general equilibrium

effects are differenced out in cross-regional regressions. Therefore, to gauge the aggregate
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implications of AI on the US economy, I develop and calibrate a general equilibrium multi-

region model with inter-regional trade in goods that accounts for cross-region spillovers

and national-level aggregates. One key novelty of the model is that it features endoge-

nous technology adoption in an otherwise standard task-based framework of automation

à la Acemoglu and Restrepo (2020). AI adoption involves paying an upfront fixed-cost

of adoption in return for a lower marginal cost of production. Adding endogenous tech-

nology adoption decision in the model ensures a tight link with the empirical analysis,

as the main AI exposure measure in this paper is the percentage of firms adopting AI in

a given industry. The model delivers a structural relationship between AI exposure and

changes in employment or wage across regions. The relative regional estimates from the

empirical analysis are used as targets to match model parameters. The calibrated model

exactly matches both the relative regional employment and wage effects estimated from

the commuting zone data.

Equipped with the calibrated model, I infer the aggregate implications of AI. Two main

takeaways stand out. First, it is important to clarify the unit of analysis when discussing

the impacts of AI. Specifically, the relative regional effect and aggregate effect can be quite

different. Under the baseline calibration with a relatively optimistic view on the cost sav-

ings capacity of AI (27%), one additional AI-adopting firm per thousand firms translates

into a 0.14 percentage point increase in the aggregate employment-to-population ratio and

a 0.99% increase in aggregate wage. Both changes are positive. By contrast, the relative

regional effects are negative. This is because changes in objects that affect all commuting

zones equally (such as aggregate output or non-labor income from capital or profits, are

absorbed by the constant term in the long-difference regression. The estimated effects are

therefore only relative: comparing labor market outcomes between high-exposure com-

muting zones versus low-exposure commuting zones. However, gauging the aggregate

effect requires take into account of all variables affected by the AI shock. For example,

a rise in national income induced by AI technological improvement can boost demand in

non-tradables and non-automated tasks, pushing up aggregate employment and wage.

Second, the direction and size of the aggregate effects depend crucially on the degree

of cost savings from AI. As AI becomes more cost effective, the employment and wage

effects of AI are more positive. This result suggests that the worker displacement ef-

fect of AI dominates when cost savings are small. However, as technology advances and

cost savings become larger, higher income and lower prices induce stronger demand for
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non-automable labor, resulting in a positive net effect on employment and wage. In the

empirically relevant case where AI cost savings are less than 30%, an increase in the

fraction of AI-adopting firms by 0.1 percentage point results in a change in the aggregate

employment-to-population ratio between -0.2 to 0.15 percentage points, and a change in

aggregate wage between -0.8 to 1 percent. Aggregate output increases between 2.3-5.5%.

This finding echos Korinek and Suh (2024), who underscore the importance of scenario

analysis given the highly uncertain nature of AI’s future path.

Related literature. This paper contributes to several strands of literature. First, the

paper directly speaks to the burgeoning debate on the labor market impact of AI. Several

studies leverage information on the occupational task content to compute occupational

exposure to AI (Frey and Osborne (2017), Webb (2020), Felten et al. (2021), Eloundou

et al. (2023), Eisfeldt et al. (2023)). However, as Cazzaniga et al. (2024) and Hampole

et al. (2025) emphasize, higher exposure does not imply lower employment if AI comple-

mentarity or productivity effects are strong. My paper directly estimates the employment

effect. Moreover, using firms’ AI adoption as the main measure of AI exposure allows me

to exploit country-level variations to construct the IV.

Most empirical works on the employment impact of AI are at the micro level. This

paper provides a more macro-level assessment focusing on labor labor markets and the

aggregate US economy. For studies at the micro-level, the most common ones use va-

cancy data (Acemoglu et al. (2022b), Copestake et al. (2023), Babina et al. (2024)).

Findings are mixed.2 The empirical analysis on local labor markets is closely related to

Bonfiglioni et al. (2025), who also find a stronger negative impact in more AI exposed

commuting zones. One key distinction is that I use the empirical estimates to discipline

a general equilibrium multi-region model and quantify the aggregate impacts of AI. An-

other difference is on the measure of AI exposure. Bonfiglioni et al. (2025) use changes in

commuting zone employment share of AI-related professions for AI exposure. There are

19 AI professions, which essentially correspond to “Computer and Mathematical Occu-

pations” in SOC 2018, excluding actuaries. In this paper, I directly leverage information

2Acemoglu et al. (2022b) and Copestake et al. (2023) find negative effect of AI adoption on non-AI jobs

and overall hiring in US and India establishments, respectively. Hui et al. (2023) examine the short-run

employment effect of generative AI using data on freelancers from Upwork and find that generative AI

reduces overall labor demand for all types of knowledge workers in the short-term. However, Babina et al.

(2024) show that AI-investing US public firms experience higher growth in sales and employment. They

further argue that the positive growth stems from stronger product innovation of AI-investing firms.
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on AI adoption from a nationally representative survey of firms. Doing so has several

advantages. First, AI adoption can more intuitively capture the concept of AI exposure

when examining the employment impact. There are many non-AI occupations such as

managers (Copestake et al. (2023)), economists (Korinek (2023)), financial analysts (Abis

and Veldkamp (2024)), even customer support agents (Brynjolfsson et al. (2025)) whose

job contents are transformed by AI. It is also highly possible that AI production (which

heavily relies on computer and mathematical occupations) is geographically concentrated

and does not take place in the same local labor market as AI adoption. Second, using AI

adoption allows for instrumenting US industry-level adoption with EU data to capture

global technological advances, thereby isolating US-specific shocks.

This paper also contributes to the extensive literature on the macroeconomic impact

of technological change and automation. Theoretically, Acemoglu and Restrepo (2019)

highlight the main economic forces of automation on employment in a task-based frame-

work. Acemoglu (2025) applies the logic to AI. I extend the framework with endogenous

technology adoption to deliver a structural counterpart of the cross-regional empirical

specification, so that relative regional estimates serve as targets in model calibration.

Empirically, this paper analyzes the impacts of a different and new technology on local

labor markets. I borrow the identification strategy from Acemoglu and Restrepo (2020),

who investigate the employment and wage impacts of industrial robots in 1990-2007. The

key difference is the exposure measure, which arises naturally as AI cannot be counted in

the same way as robots. Specifically, Acemoglu and Restrepo (2020) use the number of

robots per thousand workers for robots exposure, whereas I use the fraction of AI-adopting

firms for AI exposure. Finally, this paper also examines the distributional impact of AI.

It is therefore related to the literature on job polarization (Acemoglu and Autor (2011),

Autor et al. (2006), Goos et al. (2014)) and trade (Traiberman (2019)).

Methodologically, this paper uses causal estimates from regional data to discipline macroe-

conomic models and explores the aggregate implications. Nakamura and Steinsson (2018)

discuss the use of cross-regional variation to estimate relative regional effects and then

infer aggregate, macroeconomic effects from regional estimates. One direct application

on the topic of technological change is Acemoglu and Restrepo (2020) for industrial robots.

The rest of the paper is organized as follows. Section 2 introduces the data sources.

Section 3 describes the empirical strategy. Section 4 presents the main empirical find-
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ings and discusses robustness checks. Section 5 explores the aggregate implications of AI

using a calibrated multi-region model with endogenous technology adoption. Section 6

concludes.

2 Data Sources

2.1 AI Adoption Data

For industry-level AI adoption, I use data from the Annual Business Survey (ABS) in the

United States and its European counterpart, the ICT Usage in Enterprises. The main

purpose of using the European data is to isolate US-specific shocks and construct an

instrument for US AI adoption, so that the AI adoption “shock” captures global techno-

logical advances.3

Annual Business Survey (ABS). The ABS is an annual survey on US businesses

and business owners. The survey introduces a new technology module for the years 2018,

2019, and 2021. The module is conducted by the US Census Bureau in partnership with

the National Center for Science and Engineering Statistics (NCSES). The data is pub-

licly available at the 2-digital NAICS level, 3-digit NAICS for manufacturing, and 4-digit

NAICS for professional, scientific and technical services. Acemoglu et al. (2022a) and

Hubmer and Restrepo (2022) use the 2019 module to study automation at the firm level.

In this paper, I use the data in 2021, the latest year available. Specifically, the dataset

reports the number of firms that use a given AI technology at the industry level. There

are five different AI technologies in the ABS: machine learning, machine vision, natural

language processing, voice recognition software, and automated-guided vehicles (AGVs)

(McElheran et al. (2024)). Together with information on the total number of firms by

industry, I calculate the percentage of firms in a given industry that adopt a given AI

technology, and then take the average industry-level adoption rate across AI technologies

3I choose to use AI adoption in the EU for two reasons. First, industry-level AI adoption data

is scant. While it would be interesting to obtain data from other large AI-adopting countries, such

as China, such data is not easy to acquire. Second, since we are talking about AI adoption (rather

than AI production or innovation), Europe still ranks highly in this regard, as indicated by the IMF

AI preparedness index (https://www.imf.org/external/datamapper/datasets/AIPI). To alleviate

the concern that shocks to some commuting zones (e.g., Silicon Valley) may affect global trends of AI

adoption in certain industries, I conduct an additional test by excluding the top 1% commuting zone in

terms of AI exposure. The results remain robust (Table 2).
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to obtain the baseline industry-level measure of adoption in AI overall.

ICT Usage in Enterprises. The European Commission collects annual data from

national statistical institutes of EU member countries on ICT (Information and Commu-

nication Technologies) usage and e-commerce in enterprises. The data is publicly available

under NACE Rev. 2 industry classification. I use the percentage of enterprises that use

at least one of the following AI technologies (text mining, speech recognition, natural

language processing, machine learning, AI-based software robotic process automation,

and autonomous robots/vehicles/drones) in 2021 as the baseline measure of industry AI

adoption in the EU.

The ABS and the ICT Usage of Enterprises use different industry classification schemes.

Appendix A.1 and the fourth column of Appendix A.2 list the final industry classification

for the US and the EU. There are 47 industries in the ABS and 27 industries in the ICT

Usage in Enterprises data.4 Both datasets cover manufacturing as well as services.

2.2 Commuting Zone Level Data

There are two main sources of commuting zone level data: the American Community

Survey (ACS) and the County Business Patterns (CBP). Both datasets are aggregated to

the commuting zone level using the crosswalks of Autor and Dorn (2013). There are 722

commuting zones in total.

American Community Survey (ACS). I use the ACS 5% sample from IPUMS (Rug-

gles et al. (2024)) to compute commuting zone characteristics such as population, employ-

ment, demographics (e.g., share of female population, share of population aged 65 and

above, share of white/black/American Indian or Alaskan native/Asian population, share

of population with college degrees and above, share of foreign born), industry and occu-

pation compositions. Specifically, I use the crosswalks of Autor and Dorn (2013) to map

counties (for the year 1980) or PUMAs (Public Use Microdata Areas, for the years 1990

and beyond) to commuting zones. I drop individuals in the military. Annual wage income

is converted in real terms, to 1999 constant US dollars. I exclude observations with top-

coded wage income and trim at the 1% level. The main outcome variables are annual wage

4As the EU adoption data is mainly used to construct the IV, I do not need to impose any assumptions

on the mapping between US and EU industries. The first-stage F statistic suggests that the IV is relevant,

so having coarser industry in the EU data is less concerning.

8



income and employment-to-population and average annual wage income. Employment-

to-population ratio is defined as the number of employed working-age individuals (aged

16-65), divided by the total working-age population. Both outcome variables are calcu-

lated using census weights.

County Business Patterns (CBP). I use county-level industry employment from the

CBP to obtain local employment share. I use the local employment share to construct

Bartik-style commuting zone exposure to AI, detailed in Section 3.1 below. I also use the

CBP to compute commuting zone Bartik exposure to industrial robot penetration and

Chinese import competition during 2010-2021.

2.3 Additional Data Sources

One identification challenge is to ensure that commuting zones with higher AI exposure

are comparable to those with lower AI exposure. Differences in initial conditions across

commuting zones may affect both AI adoption and employment outcomes. For example,

local labor market trends may differ by the share of foreign born for reasons other than AI

due to cultural differences - foreign borns are more likely to be employed. If commuting

zones with a higher share of foreign born are more likely to adopt AI, the estimates will

be upward biased without controlling for the initial share of foreign born. Therefore, I

compute a wide range of initial commuting zone demographic characteristics and indus-

trial structure from the ACS. Section 3.1 provides a comprehensive list of controls in the

regression analysis.

Another type of confounding factor is concurrent labor market shocks during 2010-2021

(the period of analysis). For example, Acemoglu and Restrepo (2020) document that robo-

tization reduces the employment-to-population ratio. If commuting zones with higher AI

adoption are also more exposed to robotization, the estimated effect cannot be attributable

to AI adoption alone. Using data on industrial robots from the International Federation

of Robotics (IFR), I follow Acemoglu and Restrepo (2020) to compute Bartik exposure

to robotics in 2010-2021. Similarly, I compute Bartik exposure to Chinese import com-

petition in 2010-2021 using data from CEPII BACI (Gaulier and Zignago (2010)), which

provides information on bilateral trade flows at the HS 6-digit product level.

In Section 4.1, I perform falsification tests and provide support that after controlling
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for a wide range of commuting zone covariates, AI adoption in 2010-2021 does not af-

fect past changes in the employment-to-population ratio in 1980-2010. This implies that

commuting zones with low vs. high AI exposures are reasonably similar to begin with.

3 Empirical Strategy

3.1 Empirical Specification

The main goal of the empirical analysis is to estimate the impact of AI on employment

and wage. The empirical strategy borrows from Acemoglu and Restrepo (2020). In

particular, I exploit commuting zone level variation in AI adoption to estimate its local

employment/wage effect. The baseline empirical specification is:

∆2021
2010Yi = αd(i) + βAIExposurei + γXi + ϵi (1)

where i denotes commuting zones, d(i) refers to the census division of commuting zone

i. αd(i) is the census division fixed effect. Yi refers to labor market outcomes in com-

muting zone i, such as the overall employment-to-population ratio, or the employment-

to-population ratio by subgroups (e.g, occupation, industry), or average wage. The de-

pendent variable is the long difference of Yi between 2010 and 2021. I set 2010 as the

start year. The underlying assumption is that there was no AI adoption in 2010.5 To

alleviate concerns that 2021 may be related to Covid-19 and affects employment patterns

in a special way, I also explore the long-differences using 2019 as an alternative for the

end year in Appendix A.6.

The coefficient of interest is β, which captures the effect of commuting zone level AI

exposure on local labor market outcomes. I provide more details on the construction of

AIExposurei during 2010-2021 in Section 3.2 below. The baseline specification controls

for commuting zone level covariates Xi that may potentially influence the change in la-

bor market outcomes between 2010 and 2021. These covariates are initial demographic

characteristics (i.e, log of population size, share of female population, share of population

5The Electronic Frontier Foundation (EFF) published measurements on the progress of AI research

(https://www.eff.org/ai/metrics) until 2019. The measurement covers a range of AI applications,

and there has been little progress in 2010/2011. Felten et al. (2021) chooses 10 AI applications from the

AI Progress Measurement to calculate occupational exposure to AI. This is also the start year chosen in

Babina et al. (2024), who study the impact of AI investment on firm growth in 2010-2018.

10

https://www.eff.org/ai/metrics


aged above 65, share of white/black/American Indian or Alaskan native/Asian popula-

tion, share of foreign born, share of college-educated workers), initial industrial structure

(i.e, manufacturing share, light manufacturing share), initial share of routine occupations

to proxy for exposure to routine-biased technological change,6 initial share of high off-

shorability occupations,7 as well as Bartik exposures to robotization and Chinese import

competition.

3.2 Commuting Zone Level Exposure to AI

Ideally, to determine the causal effect of AI exposure on local employment and wage,

AIExposurei should be exogenous. However, there are several challenges in measuring

AIExposurei. First, there is no readily available data of AI adoption at the county (and

therefore commuting zone) level. Second, AI adoption is unlikely to be exogenous because

of unobserved local demand shocks, anticipation of AI arrival, and the path dependent

nature of technological change.

US Exposure to AI. To address the first challenge, I compute a Bartik-style measure

of AI exposure in the US in 2010-2021, USExposurei:

USExpsourei =
∑
j

Lij2010
Li2010

∆2021
2010AIAdoption

US
j (2)

which is a weighted sum of nationwide industry-specific change in AI adoption in 2010-

2021 in the US from the ABS,8 ∆2021
2010AIAdoption

US
j (“shift”). Weights are computed as

the local employment share of industry j in commuting zone i,
Lij2010
Li2010

(“share”). Au-

tor et al. (2013) use a similar measure for commuting zone exposure to Chinese import

competition in 1990-2007 and Acemoglu and Restrepo (2020) for exposure to industrial

robots in 1990-2007.

Figure 1 depicts the top and bottom 10 industries of AI adoption in the US. The baseline

measure of industry-level AI adoption is the average percentage of adopting firms across

6Acemoglu and Autor (2011) calculate routine task scores from data on occupation task content from

O*NET. I define routine occupations as occupations with a routine task score above the 66th percentile,

as in Autor and Dorn (2013).
7Data on offshorability of occupations is from Autor and Dorn (2013). I define offshorable occupations

as occupations with an offshorability score above the 66th percencile.
8I leverage the industry AI adoption data in 2021, so the implicit assumption is that AI adoption in

the US is zero across all industries in 2010.
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the five different AI technologies (AGV, machine learning, voice recognition, speech recog-

nition, text mining). I also present robustness results using the maximum adoption rate

across the five AI technologies for a given industry as an alternative measure for industry-

level AI adoption in Appendix A.5. Not surprisingly, the data processing, hosting, and

related services industry, an industry in the information sector, has the highest AI adop-

tion rate at 6%. The second and third industries of AI adoption are computer systems

design and publishing. There are also several manufacturing industries with high AI

adoption, such as machinery, computer and electronic products, paper products, plastic

and rubber products, and transportation equipment. Scientific research and development

is also intensive in AI adoption.

(a) bottom 10 industries (b) top 10 industries

Figure 1: Bottom and Top 10 Industries of AI Adoption in the US

Sources: ABS (2021) and author’s calculations.

Notes: Each blue bar represents the average percentage of adopting firms across the five different AI

technologies (AGV, machine learning, voice recognition, speech recognition, text mining) for the bottom

10 industries (Panel (a)) and top 10 industries (Panel (b)) in the US. Industry classification is according

to Appendix A.1.

However, neither the share nor the shift component of USExposurei is likely to be ex-

ogenous. Local employment share in 2010 can incorporate the anticipation effect of AI

arrival, resulting in simultaneity bias. Similarly, technological change can be fairly path

dependent. Commuting zones that have adopted more ICT, software, and robotics since

the 1990s are also more likely to adopt AI. To the extent that anticipation or past tech-

nologies affect employment outcomes, using local industry specialization patterns after

the proliferation of ICT to construct AI exposure may suffer from simultaneity bias. As
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for the shift component, idiosyncratic US-specific factors such as US-specific industry

demand shocks can increase both AI adoption and local labor demand, resulting in a

positive bias of the simple OLS estimate.

Instrumental Variable. I construct the following instrumental variable (IV) for USExposurei,

denoted as EUExposurei:

EUExpsourei =
∑
j

Lij1990
Li1990

∆2021
2010AIAdoption

EU
j (3)

This IV is in the same spirit as in Acemoglu and Restrepo (2020), who use 1970 lo-

cal employment share interacted with EU industry-level industrial robot penetration to

instrument for 1990 US robot penetration. I use the local employment share in 1990 to

mitigate concerns of AI anticipation and path dependence of technological change. This is

because in 1990, technologies such as ICT and robotization are only at burgeoning stages

at best.9 I also perform robustness checks using local employment shares in 1995 and

average local employment shares in 1990-1995. For the shift component, I use industry-

level AI adoption in the EU to capture global technological advances, similar to Autor

et al. (2013) and Acemoglu and Restrepo (2020). Figure 2 shows a strong positive re-

lationship between industry-level AI adoption in the US versus the EU, suggesting that

EU AI adoption is a relevant instrument for US AI adoption.10 Moreover, as shown in

Table 1, the F-statistic is 58.2, well above 10, indicating that EUExposurei is a strong

instrument.

AI Exposure vs. AI Adoption. To clarify, I use the terms “AI exposure” and “AI

adoption” interchangeably when referring to commuting zone level AI exposure. I only

use the term “AI adoption” (but not “AI exposure”) when referring to industry-level AI

adoption, as AI adoption is the main variable that is used in the “shift” component of

commuting zone level AI exposure measures (USExposurei, EUExposurei).

9I do not choose earlier periods such as 1980 due to the concern that local employment share in 2010

may have changed too much, resulting in the problem of weak instrument.
10The scales of US and EU adoption are different, because the two measures use different definitions.

The baseline definition for industry-level AI adoption in the US data is the average industry-level adop-

tion rate across five AI technologies (machine learning, machine vision, natural language processing, voice

recognition software, and AGVs). The definition for industry-level AI adoption in the EU data is the

percentage of enterprises that use at least one of the following AI technologies (text mining, speech recog-

nition, natural language processing, machine learning, AI-based software robotic process automation, and

autonomous robots/vehicles/drones).
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Figure 2: Correlation of Industry-Level AI Adoption in US vs. EU

Sources: ABS (2021), Eurostat (2021), BLS OEWS (2010), and author’s calculations.

Notes: Each blue circle represents an industry according to the industry classification in Appendix A.2.

The x-axis is AI adoption in the US. The y-axis is AI adoption in the EU. The green line is the linear

regression fit, with coefficient of 5.255 and standard error of 0.874. The size of the blue circle is the US

industry share in 2010.

AI Exposure by Commuting Zone. Figure 3 plots the geographic distribution of AI

exposure across US commuting zones. Darker color indicates that the commuting zone is

more exposed to AI. Consistent with intuition, San Francisco, Los Angeles, San Antonio,

Seattle, Pittsburgh, New York, Washington D.C., and Boston have high exposure to AI

under both USExposurei and EUExposurei.

3.3 Instrumental Variable Approach

Given specification (1) and the IV, the main empirical approach of the paper is a two-stage

least-squares (2SLS) regression. The first stage is:

USExposurei = α̃d(i) + β̃EUExposurei + γ̃Xi + ϵ̃i (4)

The second stage is:

∆2021
2010Yi = αd(i) + β ̂USExposurei + γXi + ϵi (5)
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(a) USExposurei

(b) EUExposurei

Figure 3: AI Exposure by US Commuting Zone

Sources: ABS (2021), Eurostat (2021), CBP (1990, 2010), and author’s calculations.

Notes: Each cell represents a commuting zone. Darker color indicates a higher value for USExposurei

(Panel (a)) or EUExposurei (Panel (b)).
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where ̂USExposurei is the first-stage estimate from equation (4). Each regression is

weighted by commuting zone population in 2010. Standard errors are clustered at the

state-level to account for potential serial correlation in the error term within state.

4 Empirical Results

4.1 Effect on the Overall Employment-to-Population Ratio

Table 1 presents the second-stage estimates β from equation (5), which explores the im-

pact of AI exposure on overall employment-to-population ratio at the commuting zone

level. I find that commuting zones with higher AI exposure have experienced a more

negative change in the employment-to-population ratio during 2010-2021.

The baseline IV uses local employment share in 1990, as shown in equation (3). Under

the reasonable assumption that ICT have not yet proliferated,11 I also use local employ-

ment share in 1995 and average local employment share in 1990-1995 to compute the IV

for robustness. I refrain from using later years such as the 2000s due to concerns that

ICT and robotization have become more prevalent by then, resulting in an invalid instru-

ment. The first stage F-statistic is consistently above 50, indicating that the IV is relevant.

Column (1) is the baseline specification, where I use 1990 as the local employment share

to compute the IV, and examine the effect of AI exposure on change in employment-

to-population ratio in 2010-2021. The estimate suggests that a one standard deviation

increase in AI exposure implies 0.976 percentage points lower employment-to-population

ratio. Furthermore, the estimate also implies that the employment-to-population ratio

in commuting zones at the 75th percentile of AI exposure declines by 1.25 percentage

points more than in commuting zones at the 25th percentile of AI exposure. Column (2)

presents the second-stage estimate using 1995 local employment share to compute the IV.

Similarly, column (3) uses average local employment share in 1990-1995 to compute the

IV, so that I do not rely on the local employment share in any particular year. The esti-

mated effects of AI exposure on change in employment-to-population ratio in 2010-2021

from both specifications remain significantly negative.

11Colecchi and Schreyer (2002) show that the rate of growth in IT equipment in the 1990s doubled

with respect to the 1980s in the US. ICT investment accelerated particularly in the second half of the

1990s.
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I first perform a falsification test, where I regress past changes in the overall employment-

to-population ratio in 1980-2010 on future AI exposure in 2010-2021. The coefficients

are insignificant in columns (4)-(6). These results suggest that after controlling for initial

commuting zone characteristics, concurrent labor market shocks, and census division fixed

effects, AI exposure in 2010-2021 only affects outcomes for the period 2010-2021, but not

for the earlier period of 1980-2010. Hence, long-run common factors are unlikely to drive

both the change in employment-to-population and AI adoption.

One potential concern is that shocks to some commuting zones (e.g., Silicon Valley) may

affect global trends of AI adoption in certain industries, undermining the exogeneity of

EU adoption. To address this concern, I remove the top 1% of commuting zones in terms

of AI exposure (USExposurei). Table 2 reports the results. The negative effect on the

employment-to-population ratio remains robust.

The baseline outcome variable is the employment-to-population ratio. However, if the

commuting zones that are early adopters of AI are also the richest in the country, their

population may have increased by more than the national average over time. As a re-

sult, the employment-to-population ratio could have decreased for reasons other than AI

exposure. I show that the negative effect in the employment-to-population ratio is in-

deed driven by the negative effect on employment (the numerator). Specifically, I use the

change in the log of overall employment level in 2010-2021 as the main outcome variable

and include changes in the log of working-age population as an additional control. Table

3 shows that conditional on changes in working-age population, commuting zones with

higher exposure to AI experience stronger declines in the employment level.

Table 4 runs similar regressions, with average annual and hourly wage as the main out-

come variables. Falsification tests (Columns (3) and (4)) indicate that AI exposure in

2010-2021 does not drive wage outcomes during the earlier period of 1980-2010. Columns

(1) and (2) suggest that commuting zones with a higher share of AI-adopting firms have

experienced a more negative effect on average annual wage income during 2010-2021. A

one standard deviation increase in AI exposure in the local labor market results in 2.34%

lower average annual wage income. Average wage in commuting zones at the 75th per-

centile of AI exposure declines by 3% more than in commuting zones at the 25th percentile

of AI exposure. However, the wage effects are less precisely estimated than employment
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effects. Indeed, wage information contains more measurement error and noise than em-

ployment information. Therefore, for the next section on heterogeneity, I focus only on

changes in employment.

1990 Share 1995 Share 1990-1995 Average 1990 Share 1995 Share 1990-1995 Average

2010-2021 2010-2021 2010-2021 1980-2010 1980-2010 1980-2010

(1) (2) (3) (4) (5) (6)

USExposure -7.511∗∗ -5.699∗ -8.375∗∗∗ 2.217 -1.199 0.716

(3.067) (2.979) (3.129) (4.739) (5.402) (5.075)

Observations 722 722 722 722 722 722

R-squared 0.28 0.30 0.26 0.56 0.55 0.55

First-stage coefficient 0.075∗∗∗ 0.084∗∗∗ 0.086∗∗∗ 0.075∗∗∗ 0.084∗∗∗ 0.086∗∗∗

(0.010) (0.011) (0.011) (0.010) (0.011) (0.011)

First-stage F-statistic 58.2 52.8 57.3 58.2 52.8 57.3

Table 1: Effect of AI on Employment-to-Population Ratio: 2SLS Estimates

Notes: The table reports the second stage estimates β from equation (5). The dependent variable

is the change in the employment-to-population ratio in 1980-2010 (for columns (4)-(6)) and 2010-

2021 (for columns (1)-(3)). Columns (1) and (4) use local employment share in 1990 to compute

the IV EUExposurei. Columns (2) and (5) use local employment share in 1995 to compute the IV

EUExposurei. Columns (3) and (6) use the average local employment share in 1990-1995 to compute

the IV EUExposurei. All regressions are weighted by 2010 commuting zone population. Robust stan-

dard errors are in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level. ∗Significant at the 10 percent level.

4.2 Heterogeneity

In this section, I examine the effect of AI exposure on changes in employment by various

subgroups, such as the broad sector, occupation, education, age, and gender. The goal is

to explore potential heterogeneous effects of AI adoption and investigate the subgroups

that contribute to the negative impact of AI exposure on employment. There are four

main findings. First, the manufacturing and low-skill services sectors are negatively af-

fected. Second, similar to routine-biased technological change, one of the main drivers

behind job polarization12 in the 1990s (Autor et al. (2006), Goos et al. (2014)), the nega-

tive impact of AI exposure also falls mainly on middle-skill workers. Third, AI exposure

12Job polarization is a labor market phenomenon in the US and EU since the 1990s where middle-skill

occupations are in decline in terms of employment and wage.
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1990 Share 1995 Share 1990-1995 Average 1990 Share 1995 Share 1990-1995 Average

2010-2021 2010-2021 2010-2021 1980-2010 1980-2010 1980-2010

(1) (2) (3) (4) (5) (6)

USExposure -8.968∗∗ -6.345 -10.054∗∗∗ 2.409 -2.533 -0.024

(4.156) (3.912) (4.225) (6.220) (7.361) (6.900)

Observations 714 714 714 714 714 714

R-squared 0.24 0.29 0.22 0.55 0.55 0.55

First-stage coefficient 0.060∗∗∗ 0.066∗∗∗ 0.067∗∗∗ 0.060∗∗∗ 0.066∗∗∗ 0.067∗∗∗

(0.009) (0.010) (0.010) (0.009) (0.010) (0.010)

First-stage F-statistic 41.5 43.1 43.0 41.5 43.1 43.0

Table 2: Effect of AI on Employment-to-Population Ratio (Excluding Top 1%

USExposurei): 2SLS Estimates

Notes: The table reports the second stage estimates β from equation (5). The dependent variable is

the change in the employment-to-population ratio in 1980-2010 (for columns (4)-(6)) and 2010-2021 (for

columns (1)-(3)). The sample excludes commuting zones with top 1% USExposurei. Columns (1) and

(4) use local employment share in 1990 to compute the IV EUExposurei. Columns (2) and (5) use local

employment share in 1995 to compute the IV EUExposurei. Columns (3) and (6) use the average local

employment share in 1990-1995 to compute the IV EUExposurei. All regressions are weighted by 2010

commuting zone population. Robust standard errors are in parentheses and clustered at the state level.
∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10 percent

level.

reduce the employment-to-population ratio of individuals at the two ends of the age distri-

bution (those aged 16-25 and above 46). Fourth, the adverse impact is more pronounced

on men than women.

Broad sector. Table 5 shows the second-stage estimates of AI exposure on changes

in sectoral employment-to-population ratio during 2010-2021. The results reported here

use the baseline IV, where local employment shares are from 1990. Manufacturing, and

especially low-skill services, stand out as the sectors contributing to the negative impact of

AI exposure on employment. The effect on agriculture is mildly positive, consistent with

the finding in Bonfiglioni et al. (2025). One possible explanation could be that workers

in low-skill services and manufacturing switch into agriculture, as the agriculture sector

has a relatively low skill requirement.

Occupation. Table 6 explores the impact of AI exposure on employment for two classifi-

cations of occupation groups: whether the occupation is STEM or not (Columns (1)-(2)),
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1990 Share 1995 Share 1990-1995 Average 1990 Share 1995 Share 1990-1995 Average

2010-2021 2010-2021 2010-2021 1980-2010 1980-2010 1980-2010

(1) (2) (3) (4) (5) (6)

USExposure -10.970∗∗ -8.759∗ -12.351∗∗∗ 2.162 -3.237 -0.269

(4.856) (4.701) (4.951) (7.190) (8.245) (7.605)

Observations 722 722 722 722 722 722

R-squared 0.95 0.95 0.95 0.99 0.98 0.99

First-stage coefficient 0.075 0.084 0.086 0.075 0.084 0.086

First-stage F-statistic 59.5 53.2 58.0 59.4 54.2 59.5

Table 3: Effect of AI on Log Employment Level: 2SLS Estimates

Notes: The table reports the second stage estimates β from equation (5). The dependent variable is

the change in the change in log employment level in 1980-2010 (for columns (4)-(6)) and 2010-2021

(for columns (1)-(3)). In addition, the right-hand side also controls for the change in log working age

population in 1980-2010 (for columns (4)-(6)) and 2010-2021 (for columns (1)-(3)). Columns (1) and (4)

use local employment share in 1990 to compute the IV EUExposurei. Columns (2) and (5) use local

employment share in 1995 to compute the IV EUExposurei. Columns (3) and (6) use the average local

employment share in 1990-1995 to compute the IV EUExposurei. All regressions are weighted by 2010

commuting zone population. Robust standard errors are in parentheses and clustered at the state level.
∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10 percent

level.

and whether the occupation is high-skill, middle-skill, or low-skill (Columns (3)-(5)). The

estimates suggest that the negative employment impact is due to non-STEM and middle-

skill occupations. This is finding is consistent with the firm-level evidence documented

in Babina et al. (Forthcoming). They find that firms with higher initial shares of more

educated workers tend to invest more in AI, which in turn shift these AI-investing firms

towards a more educated and more specialized workforce in STEM fields and IT skills.

Education. I compute the employment-to-population ratio by four education groups:

below high school, high school graduate, some college, college and above. The estimates

in Table 7 suggest that the employment of individuals with middle levels of education,

namely those with some college education (but not reaching Bachelors degree) and in

particular high school graduates, are negatively affected by AI exposure. Together with

the previous finding that middle-skill occupations drive the negative employment impact

of AI, these results indicate that similar to routine-biased technological change, one of

the main drivers behind job polarization in the 1990s, the negative impact of AI exposure

also falls primarily on middle-skill workers.
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2010-2018 2010-2018 1980-2010 1980-2010

Annual Wage Hourly Wage Annual Wage Hourly Wage

(1) (2) (3) (4)

Exposure to AI -18.053∗ -12.782 3.719 5.051

(9.297) (9.034) (18.550) (17.953)

Observations 722 722 722 722

R-squared 0.53 0.53 0.64 0.59

First-stage coefficient 0.075∗∗∗ 0.075∗∗∗ 0.075∗∗∗ 0.075∗∗∗

First-stage F-statistic 58.2 58.2 58.2 58.2

Table 4: Effect of AI on Wage: 2SLS Estimates

Notes: The table reports the second stage estimates β from equation (5). The dependent variable is

the change in the log residual annual (for columns (1) and (3))/hourly (for columns (2) and (4)) wage

in 1980-2010 (for columns (3)-(4)) and 2010-2021 (for columns (1)-(2)). Columns (1) and (4) use local

employment share in 1990 to compute the IV EUExposurei. Columns (2) and (5) use local employment

share in 1995 to compute the IV EUExposurei. Columns (3) and (6) use the average local employment

share in 1990-1995 to compute the IV EUExposurei. All regressions are weighted by 2010 commuting

zone population. Robust standard errors are in parentheses and clustered at the state level. ∗∗∗Significant

at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10 percent level.

Age. I divide the working-age population by 10-year age bins (16-25, 26-35, 36-45, 46-55,

56-65) and calculate their respective employment-to-population ratios. Columns (1)-(5)

in Table 8 show that the negative impact of AI on employment falls primarily on indi-

viduals at the two ends of the age distribution: the very young (aged 16-25) and older

workers (aged above 46). Intuitively, the low employment-to-population ratio of young

individuals can be attributed to two reasons. First, as technological change tends to re-

place simple tasks, more individuals aged 16-25 stay in school for longer to acquire more

technical skills and remain competitive in the labor market. Second, young individuals

who are already in the labor force are less likely to have attended college, and therefore

tend to work in lower skill occupations, which are more at risk of displacement under

technological change. Older workers (those aged 46 and above) are negatively hit by AI

as their skills may have become obsolete upon the arrival of new frontier technologies and

these workers are also less adaptable to learn new technologies (Cazzaniga et al. (2024)).

Older workers also have a higher opportunity cost to switch jobs because of the large

amount of specific human capital they have accumulated over time. Higher switching
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Agriculture Manufacturing Construction Low-Skill Services High-Skill Services

(1) (2) (3) (4) (5)

USExposure 0.914∗∗ -5.118∗ 1.047 -5.292∗∗∗ 0.939

(0.460) (2.782) (1.091) (2.039) (1.635)

Observations 722 722 722 722 722

Table 5: Effect of AI on Employment-to-Population Ratio by Broad Sector: 2SLS Esti-

mates

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employment

share to compute the IV EUExposurei. The dependent variable is the change in sectoral employment-

to-population ratio in 2010-2021. Manufacturing includes manufacturing and mining. Low-skill services

are wholesale trade, retail trade, utilities, transportation, information, real estate, administrative support

and waste management, arts and entertainment, accommodation and food services, and other services.

High-skill services are finance and insurance, professional scientific and technical services, management

of companies and enterprises, education, health, and social assistance. All regressions are weighted by

2010 commuting zone population. Robust standard errors are in parentheses and clustered at the state

level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10

percent level.

Non-STEM STEM Low-Skill Middle-Skill High-Skill

(1) (2) (3) (4) (5)

USExposure -6.997∗∗∗ -0.514 -0.230 -4.936∗ -2.345

(2.881) (1.049) (0.980) (2.559) (1.701)

Observations 722 722 722 722 722

Table 6: Effect of AI on Employment-to-Population Ratio by Occupation: 2SLS Estimates

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employment

share to compute the IV EUExposurei. The dependent variable is the change in occupational (STEM

vs. non-STEM occupations; low, middle, high-skill occupations) employment-to-population ratio in 2010-

2021. The list of STEM occupations are from O*NET. High-skill occupations are management, business

and financial occupations, professionals, and technicians. Middle-skill occupations are office and admin-

istration, sales, construction and extraction, mechanics and repairers, production, transportation and

material moving. Low-skill occupations are personal services and agriculture occupations. All regres-

sions are weighted by 2010 commuting zone population. Robust standard errors are in parentheses and

clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

cost and lower job mobility are also found among older workers under import competition

(Traiberman (2019)) or trade liberalization (Dix-Carneiro (2014)).
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Below High School High School Some College College and Above

(1) (2) (3) (4)

USExposure -2.598 -9.723∗∗∗ -6.216∗ -0.550

(5.850) (3.935) (3.729) (2.401)

Observations 722 722 722 722

Table 7: Effect of AI on Employment-to-Population Ratio by Education: 2SLS Estimates

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-to-

population ratio by education levels (below high school, high school, some college, college and above) in

2010-2021. All regressions are weighted by 2010 commuting zone population. Robust standard errors are

in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the

5 percent level. ∗Significant at the 10 percent level.

Gender. Columns (6) and (7) in Table 8 summarize the findings on male and female

employment. Both gender groups experienced a stronger decline in employment in more

AI-exposed commuting zones during 2010-2021. However, the negative impact on male

employment is more pronounced than female employment. Cazzaniga et al. (2024) argue

that although women are more likely to be employed in high AI exposure occupations,13

these occupations also tend to be more complementary to AI. Therefore, AI also presents

greater opportunities for women. The complementary nature of occupations held by

women may be the reason for the relatively smaller adverse employment impact of AI on

women than men.

Use 1995 local share or 1990-1995 average local share in IV. I perform robustness

checks by using 1995 local employment share and 1990-1995 average local employment

share to compute the IV. Results are in Appendix A.3 and Appendix A.4. The findings

are robust. The negative employment effect is primarily borne by manufacturing and

low-skill services, middle-skill workers, non-STEM occupations, and individuals at the

two ends of the age distribution. The adverse impact is also more pronounced on men

than women.

13AI occupation exposure (AIOE) is from Felten et al. (2021). An occupation with a higher AIOE score

implies that this occupation requires more abilities on which AI technologies have made more progress.
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16-25 26-35 36-45 46-55 56-65 Male Female

(1) (2) (3) (4) (5) (6) (7)

USExposure -11.519∗∗ -2.962 -5.576 -7.746∗∗ -7.969∗ -9.191∗∗ -5.581∗

(5.606) (3.423) (4.007) (3.750) (4.108) (4.214) (3.089)

Observations 722 722 722 722 722 722 722

Table 8: Effect of AI on Employment-to-Population Ratio by Age and Gender: 2SLS

Estimates

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-

to-population ratio by 10-year age bin (16-25, 26-35, 36-45, 46-55, 56-65) or gender (male, female) in

2010-2021. All regressions are weighted by 2010 commuting zone population. Robust standard errors are

in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the

5 percent level. ∗Significant at the 10 percent level.

4.3 Robustness

I conduct three robustness exercises. First, as mentioned in Section 3.2, I use the maxi-

mum adoption rate across the five AI technologies for a given industry as an alternative

measure of US industry-level AI adoption AIAdoptionUSj (Appendix A.5). Second, I use

2019 as the end year of the long-difference to mitigate the concern that employment pat-

terns in 2021 may be related to Covid-19 (Appendix A.6). Third, I use local employment

shares in 2005 instead of 2010 for USExposurei (Appendix A.7) to mitigate potential

AI anticipation or mean reversion from the 2007-2009 Great Recession. The findings are

very consistent across these alternative specifications.

5 Inferring Aggregate Effect from Relative Regional

Estimates

How do the relative regional estimates of the labor market effect of AI translate into

aggregate effects in the US economy? I answer this question through a general equilib-

rium multi-region model with inter-regional trade in goods that accounts for cross-region

spillovers. Crucially, the empirically estimated relative regional effects of AI on employ-

ment and wage are used to discipline the multi-region model. Section 5.1 describes a

closed economy model with AI adoption. The key purpose of this section is to illustrate

how AI technological advance in a given industry affects the fraction of AI-adopting firms
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and the labor share in that industry. Section 5.2 modifies the model to incorporate cross-

region spillovers through trade. Section 5.3 describes the parameterization procedure and

presents the aggregate implications of AI.

5.1 Closed Economy Model

Since the main AI exposure measure is the percentage of firms adopting AI in a given in-

dustry, the model should feature an extensive margin of AI adoption to ensure a tight link

with the empirical analysis. To this end, I extend the task-based framework from Ace-

moglu and Restrepo (2020) with heterogeneous firms and endogenous technology adop-

tion. AI adoption involves paying an upfront fixed-cost of adoption in return for a lower

marginal cost of production.14 The marginal cost of production is lower, because a set of

tasks can now be automated by AI at a lower cost than human labor. Firms are hetero-

geneous in productivity. As firm profit increases with productivity, AI adoption follows a

cut-off rule. Technological advance in AI for a given industry is captured by an expansion

in the set of AI-automable tasks. Below I describe the model and its implications in closed

economy in more detail. I show that labor share in a given industry is shaped by three

forces as technology advances: a negative direct effect, a positive productivity effect, and

an industry composition effect.

Production. The economy consists of I commuting zones, indexed by i. Each com-

muting zone has preferences over a final good, which is a CES aggregate over industry

j:

Yi =
(∑

j

ν
1
σ
j Y

σ−1
σ

ij

) σ
σ−1

, σ > 0 and
∑
j

νj = 1 (6)

where σ is the elasticity of substitution across industries, νj measures the importance of

industry j’s good in the final good. Therefore, demand for industry j goods in commuting

zone i is:

Yij = νj

(PX
ij

Pi

)−σ
Yi (7)

The ideal price index of the final good Pi is normalized to 1 in each commuting zone:

Pi =
(∑

j

νjP
X1−σ
ij

) 1
1−σ

= 1 (8)

14The model is similar in spirit as Stapleton and Webb (2023), who model both firm-level offshoring

and automation decisions subject to fixed costs.
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In autarky equilibrium, industry demand Yij equals its production Xij in each commuting

zone i. Each industry j in commuting zone i consists of a continuum of monopolistically

competitive firm. Each firm produces a differentiated variety ω and differs in terms of

productivity z(ω). The production function of industry j in commuting zone i is:

Xij = α−α(1− α)−(1−α)Aij

((∫ 1

0

xij(ω)
ηj−1

ηj dω
) ηj
ηj−1

︸ ︷︷ ︸
:=X̃ij

)α
K1−α
ij (9)

where 1 − α is the share of non-AI capital Kij. ηj > 1 is the elasticity of substitution

across varieties in industry j, which implies a constant markup of
ηj
ηj−1

. X̃ij is a CES

aggregator over heterogeneous producers, which use either human labor or AI as factor

inputs. The production function of heterogeneous producer is given below in equation

(10). α−α(1 − α)−(1−α) is a scaling factor. Aij denotes the productivity of industry j in

commuting zone i and shapes the local industry employment composition.

The part of the output of variety producer ω that can be either performed by human

labor or AI is given by xij(ω), a CES aggregate over a continuum of tasks s ∈ [0, 1]:

xij(ω) = zij(ω) min
s∈[0,1]

{xij(ω, s)} (10)

AI can replace human labor in the set of tasks s ∈ [0, θj]:

xij(ω, s) =

{
γMMij(s) + γLLij(s), if s ≤ θj

γLLij(s), if s > θj
(11)

Tasks are ordered such that γL(s)
γM (s)

increases in s, so that larger s corresponds to a more

complex task that cannot be easily replaced by AI. To model the extensive margin, assume

that AI adoption involves an upfront fixed cost fM but lower marginal cost of production.

I further assume that the fixed cost of AI adoption does not increase with the number of

AI-replacing tasks, so that firms adopt AI on all tasks that can be feasibly replaced by

AI. This assumption gives tractability by abstracting from the endogenous choice of θj

(Acemoglu et al. (2020), Hubmer and Restrepo (2022)) and is also used in Stapleton and

Webb (2023).

Define the cost savings from AI (relative to human labor) as ∆i := 1 − RMi /γM
wi/γL

≥ 0
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(so that AI will not be adopted if
RMi
γM

> wi
γL
).15 For example, if

RMi
γM

is 30% of wi
γL
, then the

cost saving ∆i is 0.7. Technological advance in AI for industry j is captured by dθj. The

idea of the model is to study the effect of dθj on employment and wage.

Household. To close the model, assume that a representative household in commut-

ing zone i exhibits the following preference:

u(Ci, Li) =
C1−ψ
i − 1

1− ψ
− B

1 + ε
L1+ε
i (12)

where ψ determines the income elasticity of labor supply, and ε is the inverse of the wage

elasticity of labor supply. The household budget constraint is Ci ≤ wiLi + Πi, where

wi denotes wage, and Πi is non-labor (capital and profits) income. For example, the

household owns the firms. Therefore, profits of monopolistic competitive producers ω are

rebated lump-sum to the household and captured by Πi.

Investment. I follow Acemoglu and Restrepo (2020)) by modeling the production of

AI as Mi = D(1 + κ)I
1

1+κ

i , where Ii denotes investment (in units of final good).16 κ > 0,

implying an upward-sloping AI capital supply curve17 The rental price of AI capital is

RM
i . Non-AI capital supply is fixed at Ki. The price of capital equals to RK

i .

Equilibrium. An equilibrium is a set of factor prices {wi, RM
i , R

K
i }, factor supplies

{Li,Mi}, and output Yi such that in all commuting zones, (i) factor supplies satisfy the

household’s and AI production maximization problems; (ii) factor prices satisfy the ideal

price index condition; and (iii) factor markets clear for labor, AI capital, and non-AI

capital. Appendix B.1.3 characterizes the equilibrium.

Lemma 1 (cut-off rule of AI adoption): In closed economy, firm’s adoption de-

cision follows a cut-off rule z∗ij, where firms with productivity zij(ω) ≥ z∗ij adopt AI and

those with productivity zij(ω) < z∗ij do not. The cut-off value of productivity z∗ij is:

z∗ij =
( fM

ΩijP
X̃α(1−σ)−1+ηj
ij Y

1+(1−α)(1−σ)
i ((θj(1−∆i) + (1− θj))1−ηj − 1)

) 1
ηj−1 wi

γL
(13)

15The model can be easily extended to incorporate industry-level scale effects of AI adoption due to

cross-firm spillover, such that industry production function (9) is depends on the share of AI-adopting

firms 1−G(z∗). However, the degree of such spillover is unclear.
16Local digital infrastructure is an example of such investment.
17Higher κ implies more inelastic AI supply curve. When κ = 0, AI capital supply is perfectly elastic

and follows RM = 1
D .
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where Ωij := η
−ηj
j (ηj − 1)ηj−1α(1− α)(1−α)(1−σ)νjA

σ−1
ij K

−(1−α)(1−σ)
i . (See Appendix B.1.1,

equation (29) for derivations).

Denote the cumulative distribution of productivity as G(z), so the fraction of firms that

adopt AI in industry j and commuting zone i is 1−G(z∗ij). A lower value of z∗ij implies a

higher fraction of AI adoption firms. Proposition 1 implies that a higher fraction of firms

adopt AI if the fixed cost of adoption fM is lower but final output Yi (which suggests

positive income effect) and cost saving from AI ∆i are higher.

For the remainder of the paper, assume that productivity z follows a Pareto distribu-

tion such that the cumulative distribution G(z) = 1 − z−ϕj , ϕj > max{ηj − 1, 1},18 ϕj is
the shape parameter. A lower value indicates a fatter tail of the distribution and hence

higher dispersion.

Define the labor share (net of non-AI capital) in industry j and commuting zone i as

sLij:

sLij :=
wiLij

P X̃
ij X̃ij

=
wiLij
αPX

ij Xij

which is a revenue-weighted share of firm-level labor share:

sLij =
wiLij

P X̃
ij X̃ij

=

∫ 1

0
wiLij(ω)dω∫ 1

0
pij(ω)xij(ω)dω

=

∫ 1

0

wiLij(ω)

pij(ω)xij(ω)︸ ︷︷ ︸
firm-level labor share

pij(ω)xij(ω)∫ 1

0
pij(ω)xij(ω)dω︸ ︷︷ ︸
revenue share

dω

Lemma 2 (labor share sLij): The labor share of industry j in commuting zone i, sLij, is:

sLij =
(ηj − 1

ηj

)(1 + ((1− θj)Γ
−ηj
ij − 1)z

∗ηj−ϕj−1
ij

1 + (Γ
1−ηj
ij − 1)z

∗ηj−ϕj−1
ij

)
(14)

(See Appendix B.1.2 for derivations).

Lemma 3 (partial equilibrium effect of dθj on AI adoption cut-off z∗ij and the

18This condition ensures that average firm productivity and P X̃
ij are finite.
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labor share sLij): Taking prices as given,

d ln z∗ij = − ∆i

Γij(1− Γ
ηj−1
ij )

dθj +
α(1− σ)− 1 + ηj

1− ηj
d lnP X̃

ij +
1 + (1− α)(1− σ)

1− ηj
d lnYi

(15)

where ∆i = 1− RMi /γM
wi/γL

and Γij = θj(1−∆i) + (1− θj).

d ln sLij = Γ
−2ηj
ij z

∗ηj−ϕj−1
ij (∆i − 1)

)
Ξijdθj + (ϕj − ηj + 1)θj(1−∆i)Γ

−ηj
ij Ξijd ln z

∗
ij (16)

where Ξij :=
z
∗ηj−ϕj−1

ij

(1+((1−θj)Γ
−ηj
ij −1)z

∗ηj−ϕj−1

ij )(1+(Γ
1−ηj
ij −1)z

∗ηj−ϕj−1

ij )
> 0. (See Appendices B.1.1 and

B.1.2 for derivations).

Equation (15) indicates that there are three forces shaping the fraction of AI-adopting

firms in response to technological advance in AI. The first term captures the direct effect.

As technology advances (dθj > 0), z∗ij is lower, which implies that a higher fraction of firms

adopt AI. The second term captures the industry composition effect. Profit increases as

industry price is higher, hence more firms can afford to adopt AI. The third term captures

the positive productivity effect of AI, which leads to higher commuting zone level final

output and higher share of AI-adopting firms. Equation (16) suggests that labor share in

industry j commuting zone i shrinks with AI technological advance and the fraction of

AI-adopting firms.

5.2 Open Economy Model

The closed economy model described in Section 5.1 abstracts from trade in goods and

services across commuting zones. Therefore, the closed economy model does not incorpo-

rate potential cross-region spillover effects, which is a key difference from relative regional

effect estimated at the commuting zone level and aggregate effect on the US economy.

The multi-region part of the model largely follows the seminal work of Acemoglu and

Restrepo (2020).

Household. The representative household’s consumption is now a composite of a trad-

able good Ci and a non-tradable good (service) Si:

u(Ci, Li) =
(Cχ

i S
1−χ
i )1−ψ − 1

1− ψ
− B

1 + ε
L1+ε
i
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where χ ∈ (0, 1) is the expenditure share on the tradable good. Assume that the produc-

tion of non-tradable good is Si = LSi . Labor market clearing requires that LCi = Li−LSi .

Household budget constraint becomes Ci + P S
i Si ≤ wiLi + χΠ

i Π, as the price of tradable

good is the numeraire and χΠ
i denotes the share of non-labor income allocated to com-

muting zone i (so that
∑

i χ
Π
i = 1).

Tradable good production. Each region i produces a differentiated tradable good,

but labor is immobile across regions. Pi denotes the price of tradable good produced

in region i and normalized to 1. The production function of the tradable final good in

commuting zone i is the same as (6). Industry tradable good in commuting zone i follows

similar CES structure as in the closed economy model, given by (9). The only modification

is that industry production now incorporates industry inputs sourced from all commuting

zones k:

Yij =
(∑

k

ν
1
λ
kjX

λ−1
λ

kij

) λ
λ−1

, λ > 0 and
∑
k

νkj = 1 (17)

where νkj is the weight associated with input from commuting zone k for industry j.

Trade is subject to iceberg trade cost tik, such that tii = 1 and tik ≥ 1 for i ̸= k. This

implies that in order for 1 unit of the good produced in i to be delivered in k, region i

must ship tik units of the good. Therefore, the price of good from region k in region i, Pki,

equals to tkiPk. I make the extreme assumption of no trade costs (πik = 1,∀i, k), which
implies that the price of tradable good is equalized across commuting zones. Setting the

price of (aggregate) tradable good to be the numeraire gives Pi = 1,∀i.

Tradable goods market clearing requires:

Xij =
∑
k

Xikj,∀i, j (18)

Capital. Capital is assumed to be freely mobile across commuting zones. Therefore,

RK
i = RK ,∀i.

The rest of the economy is similar to the closed economy version.

Equilibrium. An equilibrium is a set of prices {wi, RM
i }, factor supplies {Li, RM

i },
and national aggregates {Y,RK ,Π} such that (i) factor supplies satisfy the household’s

and AI production maximization problems; (ii) factor prices satisfy the ideal price index
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conditions for the aggregate and industry tradable goods; (iii) factor markets clear for

labor, AI capital, and non-AI capital; and (iv) non-labor income Π follows from national

final goods market clearing. Appendix B.2.1 characterizes the equilibrium.

Assumption 1 (conditions for z∗ij = z∗j ,∀i): If (i) γM
γL

∝ RMi
wi

, (ii) νij ∝ A1−λ
ij , (iii)

fM ∝ w
α(1−λ)
i , then z∗ij = z∗j for all i. Moreover, sLij = sLj for all i. (See Appendix B.2.2

for derivations).

Assumption 1 allows the model to deliver analytical expressions linking the change in

employment or wage with the change in the fraction of AI adoption firms. These ana-

lytical expressions mirror the empirical regression counterpart (1). The first condition

assumes that the relative productivity of AI to human labor is proportional to the local

relative factor price of AI to human labor. Intuitively, this condition implies that the

marginal productivity gain from AI diminishes as AI technology deepens (so that
RMi
wi

is

lower). The second condition suggests that the weight associated with industry good j

sourced from commuting zone i in the production function is inversely proportional to

the productivity of commuting zone i in industry j (as typically λ > 1). This is possible

if commuting zone i produces higher quality industry good, which is more desirable but

more difficult to produce. The third condition requires that the fixed cost of AI adoption

is inversely proportional to the commuting zone wage rate. This could be the case if the

adoption is easier in high wage commuting zones, which are typically richer and benefit

more from technology.

Assumption 2 (conditions for z∗ij = z∗,∀i, j): If (i) γM
γL

∝ RMi
wi

, (ii) νij ∝ A1−λ
ij ,

(iii) fM ∝ w
α(1−λ)
i , (iv) θj = θ0, ηj = η, ϕj = ϕ, (v) νj ∝ P Y σ−λ

j , then z∗ij = z∗ for all i

and j. Moreover, sLij = sL for all i and j. (See Appendix B.2.2 for derivations).

Under Pareto distribution, the share of AI-adopting firms in industry j is πfj := 1−G(z∗j ) =
z∗−ϕj , hence d lnπfj = −ϕd ln z∗j and dπ

f
j = −ϕπfd ln z∗j = −ϕz∗−ϕd ln z∗j . Commuting zone

i’s AI exposure corresponds to
∑

i lijdπ
f
j .

Proposition 1 (effect of dπfj on d lnLi and d lnwi): Under Assumption 2, equa-

tions (72), (73), (78), (79), (80) define a system of 5 linear equations with 5 unknowns:

d lnLi, d lnwi, d lnR
K, d lnRM

i , d lnMi. The solution of the system of equations is the

equilibrium outcome. The equation linking d lnL to AI exposure is given by (112) in Ap-
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pendix B.3.3. (See Appendices B.2.3 and B.3.3 for derivations).

Define aggregate (average) US employment and wage as d lnL =
∑

i χ
w
i d lnLi and d lnw =∑

i χ
w
i d lnwi, where χ

w
i is the share of national wage bill for commuting zone i. Similarly,

d lnRM =
∑

i χ
w
i d lnR

M
i and d lnM =

∑
i χ

w
i d lnMi.

Proposition 2 (effect of dπfj on d lnL and d lnw): Under Assumption 2, and sup-

pose that the initial allocation of non-labor income satisfies χΠ
i = wiLi∑

k wkLk
, the equations

(84), (85), (89), (90), (91), (92) define a system of 6 linear equations with 6 unknowns:

d lnL, d lnw, d lnRK, d lnRM , d lnM , d lnY . The solution of the system of equations is

the equilibrium outcome. The equation linking d lnL to AI exposure is given by (99) in

Appendix B.2.4. (See Appendix B.2.4 for derivations).

5.3 Inferring Aggregate Effect from Relative Regional Estimates

Proposition 2 provides analytical expressions describing the relationship between AI ex-

posure and aggregate employment and wage for the US economy. The basic idea about

the back-of-the-envelope calculation is similar to the standard approach in quantitative

macroeconomics. Crucially, the estimated relative regional effects of AI on employment

(Table 1) and wage (Table 4) are used to discipline the multi-region model. The calibrated

model is able to exactly reproduce the estimated relative regional effects. Equipped with

all the parameter values, I then compute the aggregate implications of AI, by solving the

system of equations in Proposition 2.

5.3.1 Parameterization

Table 9 summarizes the parameter values and their source/target. I group the parameters

in three blocs: production, preference, and AI-related. In this section, I first describe the

assigned parameters, followed by calibrated parameters. For standard production param-

eters, I set σ to 1, so that the production of the tradable final good is Cobb-Douglas. The

elasticity of substitution between traded varieties sourced from different commuting zones

λ is set to 5, the standard value used in the trade literature (Head and Mayer (2014),

Simonovska and Waugh (2014)) and adopted by Acemoglu and Restrepo (2020) in their

multi-region model of robotics. I choose η to be 619 to match a markup of 1.2. This value

is roughly in the middle of the wide range of markup estimates in the literature (Basu

19η = 1.2
1.2−1 = 6, as η

η−1 = 1.2.
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(2019)).

For the AI-related parameters, I adopt the value estimated by Acemoglu and Restrepo

(2020) for κ, which equals to 0.79. I perform sensitivity analysis by varying the val-

ues for κ in Figure 4. I set the cost savings of AI ∆ to 0.27, in line with the baseline

value in Acemoglu (2025). This value of cost savings is the average of two estimates

from experimental studies of AI: Noy and Zhang (2023) and Brynjolfsson et al. (2025).

Specifically, Noy and Zhang (2023) find a 40% faster completion in writing tasks among

white-collar workers with high ChatGPT-3.5 usage than those with low usage. Brynjolf-

sson et al. (2025) show that AI increases the speed of customer service completion by

15% on average. Hence, γ = 1 − ∆ = 0.73. Due to the wide range of estimates, and

because this paper focuses on pre-generative AI, I also experiment with higher values of γ

(implying lower cost savings). Figure 4 depicts the results and indicates that the degree

of cost savings is an essential determinant of the direction and size of the aggregate effects.

I have the following parameters to calibrate: {ϕ, α, χ, ψ, ε}. First, I assume that ini-

tially, 0.001% of firms adopt AI across all industries in 2010,20 so that πfj = πf0 = 10−5.

Given this assumption, the five calibrated parameters are determined in a loop. In the

outer loop, θ0 is pinned down by matching the IV estimate of the employment effect of

AI, i.e., β̂IVL = −7.511. Appendix B.3.3 derives the structural equation of β̂IVL . Given πfj

and θ0, the shape parameter ϕ of the Pareto productivity distribution can be solved by

targeting the 2010 mean-to-standard-deviation ratio of firm sales, which equals to 0.212

according to Compustat. This results in an ϕ = 10.13.21 Details on the calibration of

ϕ is in Appendix B.3.1. Given {ϕ, η, γ, θ0, πf0},22 sL can be calculated according to

equation (37). α is pinned down by targeting an overall labor share of αsL = 0.6 in 2010

(Karabarbounis (2024)), so that α = 0.72.

For preference parameters, I follow Acemoglu and Restrepo (2020) by setting the tradable

employment share ρ = αχ
1−χ+αχ equal to the manufacturing employment share of 0.18, so

that χ = ρ
α+ρ−αρ = 0.23. ψ and ε are determined according to equations (109) and (108)

in Appendix B.3.2, which equal to 0.05 and 0.49, respectively.

20The initial πf
j must be greater than zero to ensure that the problem is bounded.

21ϕ must be greater than 2(η − 1) for the standard deviation to be bounded.
22Details on the value of γ are elaborated in the next paragraph on AI-related parameters.
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Parameter Description Value Source/Target

Production:

σ Elasticity of substitution (industries) 1 Cobb-Douglas production

λ Elasticity of substitution (traded varieties) 5 Standard

η Elasticity of substitution (firms) 6 Markup = 1.2

ϕ Pareto distribution, shape parameter 10.13 Average firm sales
Standard Deviation of firm sales

= 0.212

α Labor and AI capital share 0.72 Labor share = 0.6

Preference:

χ Tradable sector share 0.23 ρ = Manufacturing Employment
Total employment

= 0.18

ψ Degree of risk aversion 0.05 Marginal propensity of leisure = ψ
ε
ωL = 0.1

ε Inverse of Frisch elasticity of labor supply 0.49 Household labor supply = equation (72), β̂IVw = −18.053

AI:

κ Inverse of supply elasticity of AI 0.79 Acemoglu and Restrepo (2020)

γ cost savings of AI 0.73 Acemoglu (2025)

Initial conditions:

πf0 Initial fraction of AI-adoption firms 10−5 Assumption

θ0 Initial set of AI-automable tasks 0.065 β̂IVL = −7.511

Table 9: Parameter Values

5.3.2 Aggregate Implications

Baseline Results. Equipped with the parameters in Table 9, I solve the equilibrium

for the aggregate US economy according to Proposition 2. I find that one additional AI-

adopting firm per thousand firms translates into a 0.14 percentage point increase in the

aggregate employment-to-population ratio and a 0.99% increase in aggregate wage. Ag-

gregate output increases by 5.45%. Non-labor income increases by 29.57%.23 Investment-

to-output ratio increases by 0.53 percentage points. These results highlight the difference

between relative regional effect and aggregate effect. When exploiting regional variation of

AI exposure across commuting zones, changes in objects that affect all commuting zones

equally (such as Y or Π) are absorbed by the constant term in the long-difference regres-

sion. Hence, the estimated effects are merely relative: comparing labor market outcomes

between high-exposure commuting zones versus low-exposure commuting zones. However,

gauging the aggregate effect requires take into account of all variables possibly affected

by the AI shock. These variables include, for example, changes in aggregate output and

23The model does not feature heterogeneous skills and abstracts from worker transition costs, which

are beyond the scope of this paper. Transition costs may lower aggregate output and non-labor income

in the short run, resulting in lower wage and employment.
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non-labor income. Intuitively, a rise in income induced by AI technological improvement

can boost demand in non-tradables and non-automated tasks, generating positive effects

on aggregate employment-to-population and wage.

Importance of AI cost savings ∆. The baseline value for AI cost savings ∆ = 1− γ

is taken from experimental studies of generative AI. Since this paper focuses on pre-

generative AI and because the baseline value of AI cost savings is also on the upper side

of the wide range of estimates found in the literature, I further investigate how aggregate

outcomes vary with alternative values of cost savings. I also test for the sensitivity of the

results to alternative values of AI supply elasticity 1/κ. Figure 4 plots the relationship

between AI cost savings and changes in aggregate outcomes in response to one additional

AI-adopting firm per thousand firms under various degrees of AI capital supply elasticity

κ.

First, the degree of cost savings is an essential determinant shaping the direction and

size of the aggregate effects. As AI becomes more cost effective, the employment and

wage effects of AI are more positive. This suggests that the worker displacement ef-

fect of AI dominates when cost savings are small. However, as technology advances and

cost savings become larger, higher income and lower prices induce stronger demand for

non-automable labor, resulting in a positive net effect on employment and wage. In the

empirically relevant case (∆ < 0.3), as the fraction of AI-adopting firms increases by 0.1

percentage point, change in aggregate employment-to-population ratio ranges between

-0.2 to 0.15 percentage points, and change in aggregate wage ranges between -0.8 to 1

percent. Aggregate output increases between 2.3-5.5%. Non-labor income increases be-

tween 18.9-29.6%. The investment-to-output ratio increases by 0.53 percentage points.

This value does not vary much by AI cost savings, as the initial investment-to-output

ratio (ι) is close to zero.

Second, aggregate labor market outcomes are fairly robust to alternative values of κ.

When κ is smaller, implying a more elastic AI capital supply, the economy invests more

heavily in AI capital, which pushes up output. However, aggregate employment-to-

population and wage are lower. Non-labor income is also lower because gains from AI

capital is lower when supply is more elastic (smaller κ).

Sensitivity Analysis: Varying πf0 . Table 10 presents changes in aggregate outcomes
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in response to one additional AI-adopting firm per thousand firms under other plausible

assumptions on πf0 . The effects are reasonably robust to alternative values on πf0 . Overall,

the magnitude of aggregate effects slightly diminishes as the initial fraction of AI-adopting

firms is higher.

Figure 4: Aggregate Implications: Importance of AI cost savings ∆

Notes: The y-axis are percentage point or percent changes of aggregate outcomes in response to one

additional AI-adopting firm per thousand firms under κ = 0.5 (blue line), κ = 0.8 (red line), κ = 0.5

(orange line).
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πf0 = 10−7 πf0 = 10−6 πf0 = 10−5 πf0 = 10−4

(1) (2) (3) (4)

Change in aggregate outcomes (%):

Employment-to-population ratio 0.17 0.16 0.14 0.10

Wage 1.03 1.00 0.99 0.72

Output 5.68 5.62 5.45 5.11

Non-labor income 30.34 30.13 29.57 28.46

Investment-to-output ratio 0.53 0.53 0.53 0.53

Table 10: Sensitivity Analysis: Varying πf0

6 Conclusion

Rapid and ongoing development in AI since the last decade, and in particular the advent

of generative AI technologies such as ChatGPT and DeepSeek since November 2022, have

spurred much debate on the labor market implications of AI. Most empirical research has

studied this question at the firm or individual level. This paper delves into a macro-level

analysis focusing on local labor markets and the aggregate US economy. I exploit variation

in AI adoption across US commuting zones using a shift-share approach to investigate the

employment and wage impacts of AI in 2010-2021. In particular, to address endogeneity

concerns, I instrument AI exposure using data on local employment share in 1990 and

industry-level AI adoption in the EU.

I find that commuting zones with higher AI adoption have experienced stronger declines

in the employment-to-population ratio and wage during 2010-2021. The distributional

impact is similar to previous labor market shocks such as RBTC and import competition:

the negative employment effect is primarily borne by manufacturing and low-skill services,

middle-skill workers, non-STEM occupations, males, and workers at the two ends of the

age distribution.

However, aggregate effects can be different from local labor market effects, as the former

takes into account national general equilibrium effects such as aggregate income effect

and sectoral/regional reallocation, which are differenced out in cross-regional regressions.

To this end, I develop and calibrate a general equilibrium multi-region model with en-

dogenous technology adoption which exactly matches the local labor market evidence.
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The model suggests depending on the degree of AI cost savings, a 0.1 percentage point

increase in fraction of AI-adopting firms leads to a change in the aggregate employment-

to-population ratio between -0.2 to 0.15 percentage points, and a change in aggregate

wage between -0.8 to 1 percent.

Currently, there are two main constraints in the research on the labor market impact

of AI. First, reliable data is scant, in particular large-scale, up-to-date micro-level panel

data on AI adoption.24 The ABS does not extend to the generative-AI era, proliferated by

the launch of ChatGPT in 2022. It is therefore difficult to precisely gauge the aggregate

effects of generative AI. However, this paper provides a tractable framework to gauge the

aggregate effects of AI from publicly available data on local labor markets and industry-

level AI adoption. The aggregate effects of new waves of AI or in other countries can be

gauged upon availability of local labor markets and industry-level adoption data. Second,

the direction of AI technological change is rapid and highly uncertain. This uncertainty

poses a challenge to researchers. As argued by this paper and Korinek and Suh (2024),

scenario analysis may be useful given the highly uncertain nature of AI’s future path.

The paper suggests several avenues for future research. First, given the importance of AI

cost savings in shaping the direction and size of aggregate effects, more studies are needed

to determine the precise extent of AI cost savings. Second, AI production can be quite

different from AI usage or adoption, which is the focus of this paper. Local labor markets

can specialize in or outsource AI production. Investigating the geographical specializa-

tion in the AI “value chain”, spanning from AI production to AI usage is also a fruitful

dimension for research. Third, the empirical analysis can be extended to other outcome

variables, such as inequality, housing prices, and political views.

24The panel dimension allows researchers to exploit the time variation.
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Online Appendix

A Data Appendix

A.1 Industry Classification in the ABS

Industry Description NAICS

1 Agriculture, forestry, fisheries 11

2 Mining, extraction, and support activities 21

3 Utilities 22

4 Construction 23

5 Food, beverages, tobacco 311-312

6 Textile, apparel, leather products 313-316

7 Wood products 321

8 Paper products 322

9 Printing and related support activities 323

10 Coke and refined petroleum products 324

11 Chemicals and chemical products 325

12 Rubber and plastic products 326

13 Nonmetallic mineral products 327

14 Basic metals 331

15 Fabricated metal products 332

16 Machinery 333

17 Computer and electronic products 334

18 Electrical equipment, appliances, and components 335

19 Transportation equipment 336

20 Furniture and related products 337

21 Miscellaneous manufacturing 339

22 Wholesale trade 42

23 Retail trade 44

24 Transportation and storage 48

25 Accommodation and food services 72

26 Publishing 511

27 Telecommunications 517
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28 Data processing, hosting, and related services 518

29 Other information 519

30 Finance and insurance 52

31 Real estate 53

32 Legal services 5411

33 Accounting, tax preparation, bookkeeping, and payroll services 5412

34 Architectural, engineering, and related services 5413

35 Specialized design services 5414

36 Computer systems design 5415

37 Management, scientific, and technical consulting services 5416

38 Scientific research and development services 5417

39 Advertising, public relations, and related services 5418

40 Other professional, scientific and technical services 5419

41 Management of companies and enterprises 55

42 Administrative and support service 56

43 Education 61

44 Health care 621

45 Social assistance 624

46 Arts, entertainment, and recreation 71

47 Other services 81
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A.2 Crosswalk of NAICS and NACE Rev. 2

Industry Description NAICS NACE Rev. 2

1 Food, beverages, tobacco 311-312 C10-C12

2 Textile, wearing apparel, 313 C13-15

leather and related products

3 Wood products, paper products, 321-323 C16-C18

printing and related support activities

4 Coke and refined petroleum products 324 C19

5 Chemicals and chemical products 325 (ex. 3254) C20

6 Basic pharmaceutical products 3254 C21

and pharmaceutical preparations

7 Rubber and plastic products, 326-327 C22-C23

other non-metallic mineral products

8 Basic metals and fabricated metal products, 331-332 C24-C25

except machinery and equipment

9 Computer, electronic and optical products 334, 339 C26

10 Electrical equipment 335 C27

11 Machinery and equipment n.e.c. 333 C28

12 Motor vehicles, trailers and semi-trailers, 336 C29-C30

other transport equipment

13 Furniture and related products 337 C31-C33

14 Utilities, water supply and 22 D, E

waster management

15 Construction 23 F

16 Wholesale trade 42 G46

17 Retail trade 44 G47

18 Transportation and storage 48 H

19 Accommodation and food service 72 I

20 Publishing activities 511, 519 J58-J60

21 Telecommunications 517 J61

22 Computer programming, data processing, 518 J62-J63

hosting and related activities

23 Real estate 53 L68

24 Legal and accounting activities, 5411-5416 M69-M71

activities of head offices,

management consultancy activities,

45



architectural and engineering activities,

technical testing and analysis

25 Scientific research and development 5417 M72

26 Advertising, public relations, and related services 5418-5419 M73-M75

Other professional, scientific, technical activities

27 Administrative and support service 56 N
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A.3 Heterogeneous Effects with 1995 Local Share in IV

This section presents the second-stage estimates of heterogeneous effects of employment

by subgroups using 1995 local share to calculate the IV EUExposurei.

A.3.1 Broad Sector

Agriculture Manufacturing Construction Low-Skill Services High-Skill Services

(1) (2) (3) (4) (5)

USExposure 0.866∗ -4.069∗ 1.671 -6.058∗∗∗ 1.890

(0.489) (2.321) (1.162) (1.712) (1.496)

Observations 722 722 722 722 722

Table A.3: Effect of AI on Employment-to-Population Ratio by Broad Sector: 1995 Share

in IV

Notes: The table reports the second stage estimates β from equation (5), using 1995 local employment

share to compute the IV EUExposurei. The dependent variable is the change in sectoral employment-

to-population ratio in 2010-2021. Manufacturing includes manufacturing and mining. Low-skill services

are wholesale trade, retail trade, utilities, transportation, information, real estate, administrative support

and waste management, arts and entertainment, accommodation and food services, and other services.

High-skill services are finance and insurance, professional scientific and technical services, management

of companies and enterprises, education, health, and social assistance. All regressions are weighted by

2010 commuting zone population. Robust standard errors are in parentheses and clustered at the state

level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10

percent level.
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A.3.2 Occupation

Non-STEM STEM Low-Skill Middle-Skill High-Skill

(1) (2) (3) (4) (5)

USExposure -6.045∗∗ -0.346 -0.394 -4.020 -1.285

(2.821) (1.019) (1.239) (2.491) (1.750)

Observations 722 722 722 722 722

Table A.4: Effect of AI on Employment-to-Population Ratio by Occupation: 1995 Share

in IV

Notes: The table reports the second stage estimates β from equation (5), using 1995 local employment

share to compute the IV EUExposurei. The dependent variable is the change in occupational (STEM

vs. non-STEM occupations; low, middle, high-skill occupations) employment-to-population ratio in 2010-

2021. The list of STEM occupations are from O*NET. High-skill occupations are management, business

and financial occupations, professionals, and technicians. Middle-skill occupations are office and admin-

istration, sales, construction and extraction, mechanics and repairers, production, transportation and

material moving. Low-skill occupations are personal services and agriculture occupations. All regres-

sions are weighted by 2010 commuting zone population. Robust standard errors are in parentheses and

clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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A.3.3 Education

Below High School High School Some College College and Above

(1) (2) (3) (4)

USExposure -5.527 -8.665∗∗ -3.586 0.272

(6.209) (3.502) (3.815) (2.494)

Observations 722 722 722 722

Table A.5: Effect of AI on Employment-to-Population Ratio by Education: 1995 Share

in IV

Notes: The table reports the second stage estimates β from equation (5), using 1995 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-to-

population ratio by education levels (below high school, high school, some college, college and above) in

2010-2021. All regressions are weighted by 2010 commuting zone population. Robust standard errors are

in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the

5 percent level. ∗Significant at the 10 percent level.

A.3.4 Age and Gender

16-25 26-35 36-45 46-55 56-65 Male Female

(1) (2) (3) (4) (5) (6) (7)

USExposure -11.499∗∗ -1.458 -6.657∗ -6.620∗ -0.826 -6.613∗ -4.596

(5.260) (3.860) (3.789) (3.853) (3.980) (3.758) (3.273)

Observations 722 722 722 722 722 722 722

Table A.6: Effect of AI on Employment-to-Population Ratio by Age and Gender: 1995

Share in IV

Notes: The table reports the second stage estimates β from equation (5), using 1995 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-

to-population ratio by 10-year age bins (16-25, 26-35, 36-45, 46-55, 56-65) or gender (male, female) in

2010-2021. All regressions are weighted by 2010 commuting zone population. Robust standard errors are

in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the

5 percent level. ∗Significant at the 10 percent level.
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A.4 Heterogeneous Effects with 1990-1995 Average Local Share

in IV

This section presents the second-stage estimates of heterogeneous effects of employment

by subgroups using average 1990-1995 local share to calculate the IV EUExposurei.

A.4.1 Broad Sector

Agriculture Manufacturing Construction Low-Skill Services High-Skill Services

(1) (2) (3) (4) (5)

USExposure 0.878∗ -4.976∗ 1.260 -6.432∗∗∗ 0.895

(0.453) (2.605) (1.126) (1.743) (1.484)

Observations 722 722 722 722 722

Table A.7: Effect of AI on Employment-to-Population Ratio by Broad Sector: 1990-1995

Average Share in IV

Notes: The table reports the second stage estimates β from equation (5), using 1990-1995 average local

employment share to compute the IV EUExposurei. The dependent variable is the change in sectoral

employment-to-population ratio in 2010-2021. Manufacturing includes manufacturing and mining. Low-

skill services are wholesale trade, retail trade, utilities, transportation, information, real estate, adminis-

trative support and waste management, arts and entertainment, accommodation and food services, and

other services. High-skill services are finance and insurance, professional scientific and technical services,

management of companies and enterprises, education, health, and social assistance. All regressions are

weighted by 2010 commuting zone population. Robust standard errors are in parentheses and clustered

at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant

at the 10 percent level.
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A.4.2 Occupation

Non-STEM STEM Low-Skill Middle-Skill High-Skill

(1) (2) (3) (4) (5)

USExposure -7.781∗∗∗ -0.594 -0.559 -5.090∗∗ -2.726

(2.838) (1.096) (1.124) (2.504) (1.814)

Observations 722 722 722 722 722

Table A.8: Effect of AI on Employment-to-Population Ratio by Occupation: 1990-1995

Average Share in IV

Notes: The table reports the second stage estimates β from equation (5), using 1990-1995 average local

employment share to compute the IV EUExposurei. The dependent variable is the change in occupa-

tional (STEM vs. non-STEM occupations; low, middle, high-skill occupations) employment-to-population

ratio in 2010-2021. The list of STEM occupations are from O*NET. High-skill occupations are manage-

ment, business and financial occupations, professionals, and technicians. Middle-skill occupations are

office and administration, sales, construction and extraction, mechanics and repairers, production, trans-

portation and material moving. Low-skill occupations are personal services and agriculture occupations.

All regressions are weighted by 2010 commuting zone population. Robust standard errors are in paren-

theses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent

level. ∗Significant at the 10 percent level.
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A.4.3 Education

Below High School High School Some College College and Above

(1) (2) (3) (4)

USExposure -7.109 -10.546∗∗∗ -5.820 -1.555

(5.782) (3.703) (3.873) (2.553)

Observations 722 722 722 722

Table A.9: Effect of AI on Employment-to-Population Ratio by Education: 1990-1995

Average Share in IV

Notes: The table reports the second stage estimates β from equation (5), using 1990-1995 average

local employment share to compute the IV EUExposurei. The dependent variable is the change in

employment-to-population ratio by education levels (below high school, high school, some college, college

and above) in 2010-2021. All regressions are weighted by 2010 commuting zone population. Robust

standard errors are in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level. ∗Significant at the 10 percent level.

A.4.4 Age and Gender

16-25 26-35 36-45 46-55 56-65 Male Female

(1) (2) (3) (4) (5) (6) (7)

USExposure -13.546∗∗∗ -3.810 -7.546∗ -9.109∗∗ -4.921 -9.945∗∗∗ -6.534∗∗

(5.441) (3.609) (3.967) (3.972) (3.898) (4.099) (3.309)

Observations 722 722 722 722 722 722 722

Table A.10: Effect of AI on Employment-to-Population Ratio by Age and Gender: 1990-

1995 Average Share in IV

Notes: The table reports the second stage estimates β from equation (5), using 1990-1995 average

local employment share to compute the IV EUExposurei. The dependent variable is the change in

employment-to-population ratio by 10-year age bins (16-25, 26-35, 36-45, 46-55, 56-65) or gender (male,

female) in 2010-2021. All regressions are weighted by 2010 commuting zone population. Robust standard

errors are in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant

at the 5 percent level. ∗Significant at the 10 percent level.
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A.5 Alternative Measure of Industry-Level AI Adoption

This section presents the second-stage estimates using the maximum over AI technologies

for AIAdoptUSj .

A.5.1 Overall employment-to-population ratio

1990 Share 1995 Share 1990-1995 Average 1990 Share 1995 Share 1990-1995 Average

2010-2021 2010-2021 2010-2021 1980-2010 1980-2010 1980-2010

(1) (2) (3) (4) (5) (6)

USExposure -3.785∗∗ -2.897∗ -4.325∗∗∗ 1.117 -0.610 0.370

(1.628) (1.584) (1.740) (2.403) (2.746) (2.622)

Observations 722 722 722 722 722 722

R-squared 0.20 0.25 0.16 0.55 0.55 0.55

First-stage coefficient 0.149 0.165 0.166 0.149 0.165 0.166

First-stage F-statistic 33.2 29.2 30.7 33.2 29.2 30.7

Table A.11: Effect of AI on Employment-to-Population Ratio: Use Maximum for

AIAdoptionUSj

Notes: The table reports the second stage estimates β from equation (5). The dependent variable

is the change in the employment-to-population ratio in 1980-2010 (for columns (4)-(6)) and 2010-

2021 (for columns (1)-(3)). Columns (1) and (4) use local employment share in 1990 to compute

the IV EUExposurei. Columns (2) and (5) use local employment share in 1995 to compute the IV

EUExposurei. Columns (3) and (6) use the average local employment share in 1990-1995 to com-

pute the IV EUExposurei. USExposurei is computed using the maximum over AI technologies for

AIAdoptUS
j . All regressions are weighted by 2010 commuting zone population. Robust standard errors

are in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at

the 5 percent level. ∗Significant at the 10 percent level.
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A.5.2 Broad Sector

Agriculture Manufacturing Construction Low-Skill Services High-Skill Services

(1) (2) (3) (4) (5)

USExposure 0.461∗ -2.579∗ 0.527 -2.667∗∗ 0.473

(0.243) (1.472) (0.551) (1.048) (0.827)

Observations 722 722 722 722 722

Table A.12: Effect of AI on Employment-to-Population Ratio by Broad Sector: Use

Maximum for AIAdoptionUSj

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employment

share to compute the IV EUExposurei. The dependent variable is the change in sectoral employment-

to-population ratio in 2010-2021. Manufacturing includes manufacturing and mining. Low-skill services

are wholesale trade, retail trade, utilities, transportation, information, real estate, administrative support

and waste management, arts and entertainment, accommodation and food services, and other services.

High-skill services are finance and insurance, professional scientific and technical services, management

of companies and enterprises, education, health, and social assistance. USExposurei is computed using

the maximum over AI technologies for AIAdoptUS
j . All regressions are weighted by 2010 commuting zone

population. Robust standard errors are in parentheses and clustered at the state level. ∗∗∗Significant at

the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10 percent level.
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A.5.3 Occupation

Non-STEM STEM Low-Skill Middle-Skill High-Skill

(1) (2) (3) (4) (5)

USExposure -3.526∗∗ -0.259 -0.116 -2.487∗ -1.182

(1.509) (0.534) (0.495) (1.327) (0.871)

Observations 722 722 722 722 722

Table A.13: Effect of AI on Employment-to-Population Ratio by Occupation: Use Maxi-

mum for AIAdoptionUSj

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employment

share to compute the IV EUExposurei. The dependent variable is the change in occupational (STEM

vs. non-STEM occupations; low, middle, high-skill occupations) employment-to-population ratio in 2010-

2021. The list of STEM occupations are from O*NET. High-skill occupations are management, business

and financial occupations, professionals, and technicians. Middle-skill occupations are office and admin-

istration, sales, construction and extraction, mechanics and repairers, production, transportation and

material moving. Low-skill occupations are personal services and agriculture occupations. USExposurei

is computed using the maximum over AI technologies for AIAdoptUS
j . All regressions are weighted by

2010 commuting zone population. Robust standard errors are in parentheses and clustered at the state

level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10

percent level.
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A.5.4 Education

Below High School High School Some College College and Above

(1) (2) (3) (4)

USExposure -1.309 -4.900∗∗ -3.132 -0.277

(2.971) (2.050) (1.903) (1.209)

Observations 722 722 722 722

R-squared 0.25 0.26 0.25 0.24

Table A.14: Effect of AI on Employment-to-Population Ratio by Education: Use Maxi-

mum for AIAdoptionUSj

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-to-

population ratio by education levels (below high school, high school, some college, college and above)

in 2010-2021. USExposurei is computed using the maximum over AI technologies for AIAdoptUS
j . All

regressions are weighted by 2010 commuting zone population. Robust standard errors are in parentheses

and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

A.5.5 Age and Gender

16-25 26-35 36-45 46-55 56-65 Male Female

(1) (2) (3) (4) (5) (6) (7)

USExposure -5.804∗∗ -1.493 -2.810 -3.904∗ -4.016∗ -4.631∗∗ -2.812∗

(2.871) (1.744) (2.079) (2.030) (2.145) (2.180) (1.628)

Observations 722 722 722 722 722 722 722

Table A.15: Effect of AI on Employment-to-Population Ratio by Age and Gender: Use

Maximum for AIAdoptionUSj

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-

to-population ratio by 10-year age bins (16-25, 26-35, 36-45, 46-55, 56-65) or gender (male, female) in

2010-2021. USExposurei is computed using the maximum over AI technologies for AIAdoptUS
j . All

regressions are weighted by 2010 commuting zone population. Robust standard errors are in parentheses

and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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A.6 Alternative End Year for the Long-Difference

This section presents the second-stage estimates of AI exposure on employment changes

during 2010-2019 rather than 2010-2021.

A.6.1 Overall employment-to-population ratio

1990 Share 1995 Share 1990-1995 Average 1990 Share 1995 Share 1990-1995 Average

2010-2021 2010-2021 2010-2021 1980-2010 1980-2010 1980-2010

(1) (2) (3) (4) (5) (6)

USExposure -7.060∗∗ -6.450∗∗ -8.240∗∗∗ 2.217 -1.199 0.716

(3.088) (2.918) (3.129) (4.739) (5.402) (5.075)

Observations 722 722 722 722 722 722

R-squared 0.37 0.38 0.35 0.56 0.55 0.55

First-stage coefficient 0.075 0.084 0.086 0.075 0.084 0.086

First-stage F-statistic 58.2 52.8 57.3 58.2 52.8 57.3

Table A.16: Effect of AI on Employment-to-Population Ratio: 2019 as End Year

Notes: The table reports the second stage estimates β from equation (5). The dependent variable

is the change in the employment-to-population ratio in 1980-2010 (for columns (4)-(6)) and 2010-

2019 (for columns (1)-(3)). Columns (1) and (4) use local employment share in 1990 to compute

the IV EUExposurei. Columns (2) and (5) use local employment share in 1995 to compute the IV

EUExposurei. Columns (3) and (6) use the average local employment share in 1990-1995 to compute

the IV EUExposurei. All regressions are weighted by 2010 commuting zone population. Robust stan-

dard errors are in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level. ∗Significant at the 10 percent level.
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A.6.2 Broad Sector

Agriculture Manufacturing Construction Low-Skill Services High-Skill Services

(1) (2) (3) (4) (5)

USExposure 1.160∗∗ -5.771∗∗ 1.482 -4.773∗∗∗ 0.842

(0.474) (2.504) (1.107) (1.561) (1.590)

Observations 722 722 722 722 722

Table A.17: Effect of AI on Employment-to-Population Ratio by Broad Sector: 2019 as

End Year

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employment

share to compute the IV EUExposurei. The dependent variable is the change in sectoral employment-

to-population ratio in 2010-2019. Manufacturing includes manufacturing and mining. Low-skill services

are wholesale trade, retail trade, utilities, transportation, information, real estate, administrative support

and waste management, arts and entertainment, accommodation and food services, and other services.

High-skill services are finance and insurance, professional scientific and technical services, management

of companies and enterprises, education, health, and social assistance. All regressions are weighted by

2010 commuting zone population. Robust standard errors are in parentheses and clustered at the state

level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10

percent level.
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A.6.3 Occupation

Non-STEM STEM Low-Skill Middle-Skill High-Skill

(1) (2) (3) (4) (5)

USExposure -6.259∗∗ -0.801 0.550 -5.114∗∗ -2.496

(2.909) (0.808) (1.098) (2.347) (1.529)

Observations 722 722 722 722 722

Table A.18: Effect of AI on Employment-to-Population Ratio by Occupation: 2019 as

End Year

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employment

share to compute the IV EUExposurei. The dependent variable is the change in occupational (STEM

vs. non-STEM occupations; low, middle, high-skill occupations) employment-to-population ratio in 2010-

2019. The list of STEM occupations are from O*NET. High-skill occupations are management, business

and financial occupations, professionals, and technicians. Middle-skill occupations are office and admin-

istration, sales, construction and extraction, mechanics and repairers, production, transportation and

material moving. Low-skill occupations are personal services and agriculture occupations. All regres-

sions are weighted by 2010 commuting zone population. Robust standard errors are in parentheses and

clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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A.6.4 Education

Below High School High School Some College College and Above

(1) (2) (3) (4)

USExposure -0.320 -7.005∗∗ -7.569∗∗ -2.139

(5.776) (3.416) (3.726) (2.413)

Observations 722 722 722 722

Table A.19: Effect of AI on Employment-to-Population Ratio by Education: 2019 as End

Year

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-to-

population ratio by education levels (below high school, high school, some college, college and above) in

2010-2019. All regressions are weighted by 2010 commuting zone population. Robust standard errors are

in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the

5 percent level. ∗Significant at the 10 percent level.

A.6.5 Age and Gender

16-25 26-35 36-45 46-55 56-65 Male Female

(1) (2) (3) (4) (5) (6) (7)

USExposure -11.104∗∗ -4.588 -3.180 -7.393∗ -7.938∗∗ -7.685∗∗ -6.242∗∗

(5.448) (3.017) (3.977) (4.131) (3.914) (3.859) (3.171)

Observations 722 722 722 722 722 722 722

Table A.20: Effect of AI on Employment-to-Population Ratio by Age and Gender: 2019

as End Year

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-

to-population ratio by 10-year age bins (16-25, 26-35, 36-45, 46-55, 56-65) or gender (male, female) in

2010-2019. All regressions are weighted by 2010 commuting zone population. Robust standard errors are

in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the

5 percent level. ∗Significant at the 10 percent level.
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A.7 Alternative Share for USExposure

This section presents the second-stage estimates using 2005 local employment share to

compute USExpsourei.

A.7.1 Overall employment-to-population ratio

1990 Share 1995 Share 1990-1995 Average 1990 Share 1995 Share 1990-1995 Average

2010-2021 2010-2021 2010-2021 1980-2010 1980-2010 1980-2010

(1) (2) (3) (4) (5) (6)

USExposure -7.109∗∗ -5.160∗ -7.840∗∗∗ 2.098 -1.086 0.671

(2.899) (2.712) (2.946) (4.479) (4.892) (4.751)

Observations 722 722 722 722 722 722

R-squared 0.27 0.30 0.25 0.55 0.55 0.55

First-stage coefficient 0.080 0.092 0.092 0.080 0.092 0.092

First-stage F-statistic 57.5 69.4 56.6 57.5 69.4 56.6

Table A.21: Effect of AI on Employment-to-Population Ratio: 2005 Share in USExposure

Notes: The table reports the second stage estimates β from equation (5). The dependent variable is

the change in the employment-to-population ratio in 1980-2010 (for columns (4)-(6)) and 2010-2021

(for columns (1)-(3)). USExposure uses 2005 local employment share. Columns (1) and (4) use local

employment share in 1990 to compute the IV EUExposurei. Columns (2) and (5) use local employment

share in 1995 to compute the IV EUExposurei. Columns (3) and (6) use the average local employment

share in 1990-1995 to compute the IV EUExposurei. All regressions are weighted by 2010 commuting

zone population. Robust standard errors are in parentheses and clustered at the state level. ∗∗∗Significant

at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10 percent level.
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A.7.2 Broad Sector

Agriculture Manufacturing Construction Low-Skill Services High-Skill Services

(1) (2) (3) (4) (5)

USExposure 0.865∗∗ -4.845∗ 0.991 -5.009∗∗ 0.889

(0.429) (2.629) (1.030) (2.028) (1.573)

Observations 722 722 722 722 722

Table A.22: Effect of AI on Employment-to-Population Ratio by Broad Sector: 2005

Share in USExposure

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employment

share to compute the IV EUExposurei. The dependent variable is the change in sectoral employment-to-

population ratio in 2010-2021. USExpsourei uses 2005 local employment share. Manufacturing includes

manufacturing and mining. Low-skill services are wholesale trade, retail trade, utilities, transportation,

information, real estate, administrative support and waste management, arts and entertainment, accom-

modation and food services, and other services. High-skill services are finance and insurance, professional

scientific and technical services, management of companies and enterprises, education, health, and social

assistance. All regressions are weighted by 2010 commuting zone population. Robust standard errors are

in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level. ∗∗Significant at the

5 percent level. ∗Significant at the 10 percent level.
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A.7.3 Occupation

Non-STEM STEM Low-Skill Middle-Skill High-Skill

(1) (2) (3) (4) (5)

USExposure -6.623∗∗ -0.486 -0.217 -4.672∗ -2.220

(2.725) (0.992) (0.926) (2.516) (1.545)

Observations 722 722 722 722 722

Table A.23: Effect of AI on Employment-to-Population Ratio by Occupation: 2005 Share

in USExposure

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employment

share to compute the IV EUExposurei. The dependent variable is the change in occupational (STEM

vs. non-STEM occupations; low, middle, high-skill occupations) employment-to-population ratio in 2010-

2021. USExpsourei uses 2005 local employment share. The list of STEM occupations are from O*NET.

High-skill occupations are management, business and financial occupations, professionals, and technicians.

Middle-skill occupations are office and administration, sales, construction and extraction, mechanics and

repairers, production, transportation and material moving. Low-skill occupations are personal services

and agriculture occupations. All regressions are weighted by 2010 commuting zone population. Robust

standard errors are in parentheses and clustered at the state level. ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level. ∗Significant at the 10 percent level.
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A.7.4 Education

Below High School High School Some College College and Above

(1) (2) (3) (4)

USExposure -2.459 -9.203∗∗ -5.884 -0.520

(5.484) (3.920) (3.693) (2.260)

Observations 722 722 722 722

Table A.24: Effect of AI on Employment-to-Population Ratio by Education: 2005 Share

in USExposure

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-to-

population ratio by education levels (below high school, high school, some college, college and above)

in 2010-2021. USExpsourei uses 2005 local employment share. All regressions are weighted by 2010

commuting zone population. Robust standard errors are in parentheses and clustered at the state level.
∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10 percent

level.

A.7.5 Age and Gender

16-25 26-35 36-45 46-55 56-65 Male Female

(1) (2) (3) (4) (5) (6) (7)

USExposure -10.903∗ -2.804 -5.278 -7.332∗∗ -7.543∗∗ -8.699∗∗ -5.283∗

(5.653) (3.220) (3.599) (3.336) (3.843) (4.134) (2.795)

Observations 722 722 722 722 722 722 722

Table A.25: Effect of AI on Employment-to-Population Ratio by Age and Gender: 2005

Share in USExposure

Notes: The table reports the second stage estimates β from equation (5), using 1990 local employ-

ment share to compute the IV EUExposurei. The dependent variable is the change in employment-

to-population ratio by 10-year age bins (16-25, 26-35, 36-45, 46-55, 56-65) or gender (male, female) in

2010-2021. USExpsourei uses 2005 local employment share. All regressions are weighted by 2010 com-

muting zone population. Robust standard errors are in parentheses and clustered at the state level.
∗∗∗Significant at the 1 percent level. ∗∗Significant at the 5 percent level. ∗Significant at the 10 percent

level.
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B Model Appendix

B.1 Closed Economy Model

B.1.1 Production

The price of industry j in commuting zone i, PX
ij , follows from the standard maximization

problem of Cobb-Douglas production (9):

PX
ij =

1

Aij
P X̃α
ij RK1−α

i (19)

The composite price P X̃
ij is:

P X̃
ij =

(∫ 1

0

pij(ω)
1−ηjdω

) 1
1−ηj (20)

The price of firm ω, pij(ω), is:

pij(ω) =
ηj

ηj − 1
mcij(ω) (21)

where the marginal cost of production of firm ω is:

mcij(ω) =

 1
zij(ω)

(
θj
RMi
γM

+ (1− θj)
wi
γL

)
, if adopting AI

1
zij(ω)

wi
γL
, if not adopting AI

(22)

Demand of firm ω, xij(ω), is:

xij(ω) =
(pij(ω)
P X̃
ij

)−ηj
X̃ij (23)

Demand of composite output X̃ij is:

X̃ij = α
PX
ij Xij

P X̃
ij

= α
νjP

X1−σ
ij Yi

P X̃
ij

= ανjA
σ−1
ij P

X̃α(1−σ)−1
ij R

K(1−α)(1−σ)
i Yi

= ανjA
σ−1
ij P

X̃α(1−σ)−1
ij

(
(1− α)

Yi
Ki

)(1−α)(1−σ)
Yi

= α(1− α)(1−α)(1−σ)νjA
σ−1
ij P

X̃α(1−σ)−1
ij K

−(1−α)(1−σ)
i Y

1+(1−α)(1−σ)
i

(24)
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where the second line follows from (7) and the third line follows from RK
i Ki = (1− α)Yi.

Profit of firm ω, πij(ω), is:

πij(ω) =


1
ηj

(
ηj
ηj−1

1
zij(ω)

(
θj
RMi
γM

+ (1− θj)
wi
γL

))1−ηj
P
X̃ηj
ij X̃ij − fM , if adopting AI

1
ηj

(
ηj
ηj−1

1
zij(ω)

wi
γL

)1−ηj
P
X̃ηj
ij X̃ij, if not adopting AI

(25)

Therefore, firm ω chooses to adopt AI if:

1

ηj

( ηj
ηj − 1

1

zij(ω)

(
θj
RM
i

γM
+ (1− θj)

wi
γL

))1−ηj
P
X̃ηj
ij X̃ij − fM ≥ 1

ηj

( ηj
ηj − 1

1

zij(ω)

wi
γL

)1−ηj
P
X̃ηj
ij X̃ij

(26)

Define cost savings from AI (relative to human labor) as ∆i := 1 − RMi /γM
wi/γL

≥ 0 (so that

AI will not be adopted if
RMi
γM

> wi
γL
. For example, if

RMi
γM

is 30% of wi
γL
, then the cost saving

∆i is 0.7. Then:

θj
RM
i

γM
+ (1− θj)

wi
γL

= (θj(1−∆i) + (1− θj)︸ ︷︷ ︸
:=Γij

)
wi
γL

≤ wi
γL

(27)

where the inequality in (27) follows from ∆i ≥ 0 and implies that AI adoption leads to

lower marginal cost of production. A higher ∆i (hence a lower Γij) implies lower marginal

cost of production following AI adoption.

Simplifying equation (26):

ΩijP
X̃α(1−σ)−1+ηj
ij Y

1+(1−α)(1−σ)
i zij(ω)

ηj−1((θj(1−∆i) + (1− θj))
1−ηj − 1)

(wi
γL

)1−ηj
≥ fM

(28)

where Ωij := η
−ηj
j (ηj − 1)ηj−1α(1− α)(1−α)(1−σ)νjA

σ−1
ij K

−(1−α)(1−σ)
i .

Therefore, firm’s adoption decision follows a cut-off rule z∗ij, where firms with produc-

tivity zij(ω) ≥ z∗ij adopt AI and those with productivity zij(ω) < z∗ij do not. The cut-off

value of productivity z∗ij is:

z∗ij =
( fM

ΩijP
X̃α(1−σ)−1+ηj
ij Y

1+(1−α)(1−σ)
i ((θj(1−∆i) + (1− θj))1−ηj − 1)

) 1
ηj−1 wi

γL
(29)

Suppose that the cumulative distribution of productivity is G(z), the fraction of firms
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that adopt AI is 1−G(z∗ij). A lower value of z∗ij implies a higher fraction of AI adoption

firms. Therefore, equation (29) implies that a higher fraction of firms adopt AI if the fixed

cost of adoption fM is lower but final output Yi (which suggests positive income effect)

and cost saving from AI ∆i are higher.

How does technological advance in AI dθj affects the productivity cut-off z∗ij? In partial

equilibrium, taking factor prices as given and differentiating equation (29) with respect to

dθj:

d ln z∗ij = − ∆i

Γij(1− Γ
ηj−1
ij )

dθj +
α(1− σ)− 1 + ηj

1− ηj
d lnP X̃

ij +
1 + (1− α)(1− σ)

1− ηj
d lnYi

(30)

where ∆i = 1 − RMi /γM
wi/γL

and Γij = θj(1 − ∆i) + (1 − θj). Equation (30) indicates that

there are three forces shaping the fraction of AI-adopting firms in response to techno-

logical advance in AI. The first term captures the direct effect. As technology advances

(dθj > 0), z∗ij is lower, which implies that a higher fraction of firms adopt AI. The second

term captures the industry composition effect. Profit increases as industry price is higher,

hence more firms can afford to adopt AI. The third term captures the positive productiv-

ity effect of AI, which leads to higher commuting zone level final output and higher share

of AI-adopting firms.

Assume that productivity z follows a Pareto distribution such that the cumulative distri-

bution G(z) = 1− z−ϕj , ϕj > max{ηj − 1, 1},25 ϕj is the shape parameter. A lower value

indicates a fatter tail of the distribution and hence higher dispersion. Incorporating the

AI adoption rule into (20):

P X̃
ij =

wi
γL

ηj
ηj − 1

((∫ z∗ij

1

zηj−1dGz
)
+ Γ

1−ηj
ij

(∫ ∞

z∗ij

zηj−1dGz
)) 1

1−ηj

=
wi
γL

ηj
ηj − 1

( ϕj
ϕj − ηj + 1

) 1
1−ηj

(
1 + (Γ

1−ηj
ij − 1)z

∗ηj−ϕj−1
ij

) 1
1−ηj

(31)

In partial equilibrium, taking factor prices as given and differentiating equation (31) with

respect to dθj:

d lnP X̃
ij = −

Γ
−ηj
ij z

∗ηj−ϕj−1
ij ∆i

1 + (Γ
1−ηj
ij − 1)z

∗ηj−ϕj−1
ij

dθj +
( ϕj
ηj − 1

− 1
) (Γ

1−ηj
ij − 1)z

∗ηj−ϕj−1
ij

1 + (Γ
1−ηj
ij − 1)z

∗ηj−ϕj−1
ij

d ln z∗ij

(32)

25This condition ensures that average firm productivity and P X̃
ij are finite.
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Equation (32) describes how the composite price responds to increase in AI technology.

Composite price falls as AI technology advances (dθj > 0) or higher fraction of firms

adopt AI (d ln z∗ij < 0).

B.1.2 Labor Share

Define the labor share (net of non-AI capital) in industry j and commuting zone i as sLij:

sLij :=
wiLij

P X̃
ij X̃ij

=
wiLij
αPX

ij Xij

(33)

which is a revenue-weighted share of firm-level labor share:

sLij =
wiLij

P X̃
ij X̃ij

=

∫ 1

0
wiLij(ω)dω∫ 1

0
pij(ω)xij(ω)dω

=

∫ 1

0

wiLij(ω)

pij(ω)xij(ω)︸ ︷︷ ︸
firm-level labor share

pij(ω)xij(ω)∫ 1

0
pij(ω)xij(ω)dω︸ ︷︷ ︸
revenue share

dω (34)

with

wiLij(ω)

pij(ω)xij(ω)
=


ηj−1

ηj

(1−θj)
wi
γL

θj
RM
i
γM

+(1−θj)
wi
γL

, if zij(ω) ≥ z∗ij

ηj−1

ηj
, if zij(ω) < z∗ij

(35)

pij(ω)xij(ω)∫ 1

0
pij(ω)xij(ω)dω

=
pij(ω)xij(ω)

P X̃
ij X̃ij

=
p
1−ηj
ij P

X̃ηj
ij X̃ij

P X̃
ij X̃ij

=
(pij(ω)
P X̃
ij

)1−ηj
(36)

Plug (35) and (36) into (34):

sLij = P
X̃ηj−1
ij

( ηj
ηj − 1

)−ηj(wi
γL

)1−ηj(∫ z∗ij

1

zηj−1dGz + (1− θj)Γ
−ηj
ij

∫ ∞

z∗ij

zηj−1dGz
)

= P
X̃ηj−1
ij

( ηj
ηj − 1

)−ηj(wi
γL

)1−ηj( ϕj
ϕj − ηj + 1

)(
1 + ((1− θj)Γ

−ηj
ij − 1)z

∗ηj−ϕj−1
ij

)
=

(ηj − 1

ηj

)(1 + ((1− θj)Γ
−ηj
ij − 1)z

∗ηj−ϕj−1
ij

1 + (Γ
1−ηj
ij − 1)z

∗ηj−ϕj−1
ij

) (37)

Assuming 1+ ((1− θj)Γ
−ηj
ij − 1)z

∗ηj−ϕj−1
ij > 0 ensures that sLij > 0. Taking prices as given
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and totally differentiate (37) with respect to dθj:

d ln sLij =
( Γ

−ηj−1
ij ((1− θj)ηj∆i − Γij)

1 + ((1− θj)Γ
−ηj
ij − 1)z

∗ηj−ϕj−1
ij

+
Γ
−ηj
ij (1− ηj)∆i

1 + (Γ
1−ηj
ij − 1)z

∗ηj−ϕj−1
ij

)
z
∗ηj−ϕj−1
ij dθj

+ (ηj − ϕj − 1)
( (1− θj)Γ

−ηj
ij − 1

1 + ((1− θj)Γ
−ηj
ij − 1)z

∗ηj−ϕj−1
ij

−
Γ
1−ηj
ij − 1

1 + (Γ
1−ηj
ij − 1)z

∗ηj−ϕj−1
ij

)
z
∗ηj−ϕj−1
ij d ln z∗ij

=
(
Γ
−ηj
ij (1− z

∗ηj−ϕj−1
ij )((1− ηj)∆i − 1) + Γ

−ηj−1
ij (1− z

∗ηj−ϕj−1
ij )ηj∆i(1− θj)

+ Γ
−2ηj
ij z

∗ηj−ϕj−1
ij (∆i − 1)

)
Ξijdθj + (ϕj − ηj + 1)θj(1−∆i)Γ

−ηj
ij Ξijd ln z

∗
ij

=
(
Γ
−ηj
ij (1− z

∗ηj−ϕj−1
ij )(∆i − 1) + Γ

−ηj
ij (1− z

∗ηj−ϕj−1
ij )ηj∆i(

1− θj
Γij

− 1)

+ Γ
−2ηj
ij z

∗ηj−ϕj−1
ij (∆i − 1)

)
Ξijdθj + (ϕj − ηj + 1)θj(1−∆i)Γ

−ηj
ij Ξijd ln z

∗
ij

(38)

where Ξij :=
z
∗ηj−ϕj−1

ij

(1+((1−θj)Γ
−ηj
ij −1)z

∗ηj−ϕj−1

ij )(1+(Γ
1−ηj
ij −1)z

∗ηj−ϕj−1

ij )
> 0. Equation (38) suggests

that labor share in industry j commuting zone i shrinks with AI technological advance

and the fraction of AI-adopting firms.

B.1.3 Equilibrium

The household optimization problem gives:

wi = BLεiC
ψ
i = BLεi (Yi − Ii)

ψ = BLεi (Yi − Ii)
ψ = BLεi (Yi −D−1−κ(1 + κ)−1−κM1+κ

i − Πi)
ψ

(39)

where the second equality is the final good market clearing condition and third equality

is the AI production function.

The first-order condition of AI production gives:

RM
i = D−1−κ(1 + κ)−κMκ

i (40)

The final good in each commuting zone is the numeraire, so the ideal price index is:

Pi =
(∑

j

νjP
X1−σ
ij

) 1
1−σ

= 1 (41)

69



Labor demand is:

wiLi =
∑
i

αsLijP
X
ij Xij = αsLijνjP

X1−σ
ij Yi

=
∑
i

αsLijνj

( 1

Aij
P X̃α
ij RK1−α

i

)1−σ
Yi

=
∑
i

αsLijνj

( 1

Aij
P X̃α
ij

((1− α)Yi
Ki

)1−α)1−σ
Yi

(42)

AI capital demand is:

RM
i Mi =

∑
i

α
(ηj − 1

ηj
− sLij

)
νj

( 1

Aij
P X̃α
ij

((1− α)Yi
Ki

)1−α)1−σ
Yi (43)

Non-AI capital demand is:

RK
i Ki = (1− α)Yi (44)

Therefore, equations (39), (40), (41), (42), (43) and (44) characterize the equilibrium.

B.2 Open Economy Model

B.2.1 Equilibrium

Since the price of tradable good Pi is normalized to 1, household maximization problem

gives:

Si =
1− χ

wi
(wiLi + χΠ

i Π) (45)

where P S
i = wi follows from the non-tradable good production function Si = LSi .

The consumer price index of the consumption aggregate Cχ
i S

1−χ
i is:

PCPI
i = (1− χ)−(1−χ)χ−χw1−χ

i (46)

The labor supply condition derived from the household maximization problem gives:

w
χ+(1−χ)ψ
i = (1− χ)(1−χ)(ψ−1)χχ(ψ−1)B(wiLi + χΠ

i Π)
ψLεi (47)

The first-order condition of AI production remains the same as the closed economy model:

RM
i = D−1−κ(1 + κ)−κMκ

i (48)
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The price of tradable good for industry j in commuting zone i is:

P Y
j = P Y

ij =
(∑

k

νkjP
X1−λ
kj

) 1
1−λ

(49)

The price of the aggregate tradable good is the numeraire, and the ideal price index is:

1 =
∑
j

νjP
Y 1−σ
j (50)

Labor demand is:

wiLi =
∑
j

wiLij + wiL
S
i

=
∑
j

αsLijP
X
ij Xij + (1− χ)(wiLi + χΠ

i Π)

=
∑
j

αsLijP
X
ij

(∑
k

Xikj

)
+ (1− χ)(wiLi + χΠ

i Π)

=
∑
j

αsLijP
X
ij

(∑
k

νijYkjP
Y λ
j PX−λ

ij

)
+ (1− χ)(wiLi + χΠ

i Π)

=
∑
j

αsLijP
X
ij

(∑
k

νijνjYkP
Y λ−σ
j PX−λ

ij

)
+ (1− χ)(wiLi + χΠ

i Π)

=
∑
j

αsLijνijνjP
Y λ−σ
j PX1−λ

ij

(∑
k

Yk

)
+ (1− χ)(wiLi + χΠ

i Π)

=
∑
j

αsLijνijνjP
Y λ−σ
j PX1−λ

ij Y + (1− χ)(wiLi + χΠ
i Π)

(51)

where the fourth equality follows from optimal demand of commuting zone i’s input in

industry j sourced by commuting zone k: Xikj = νij

(
PXij
PYj

)−λ
Ykj and the fifth equality

follows from optimal demand of Ykj = νjP
Y−σ
j Yk.

AI capital demand is:

RM
i Mi =

∑
j

α
(ηj − 1

ηj
− sLij

)
νijνjP

Y λ−σ
j PX1−λ

ij Y (52)

Non-AI capital demand is:

RKK = (1− α)Y (53)

Non-labor income (capital and profit gains) is:

Π = Y −
∑
i

wiLi −
∑
i

D−1−κ(1 + κ)−1−κM1+κ
i (54)

Therefore, equations (48), (49), (50), (51), (52), (53), (54) characterize the equilibrium.

71



B.2.2 AI Adoption

In open economy, the price of industry j in commuting zone i, PX
ij is similar as in the

closed economy version (equation (19)), except that now RK
i = RK ,∀i. This is because

non-AI capital is freely mobile across commuting zones:

PX
ij =

1

Aij
P X̃α
ij RK1−α (55)

Demand of the composite output X̃ij is:

X̃ij = α
PX
ij Xij

P X̃
ij

= α
νijνjP

Y λ−σ
j PX1−λ

ij Y

P X̃
ij

= ανijνjP
Y λ−σ
j Aλ−1

ij P
X̃α(1−λ)−1
ij RK(1−α)(1−λ)Y

= ανijνjP
Y λ−σ
j Aλ−1

ij P
X̃α(1−λ)−1
ij

(
(1− α)

Y

K

)(1−α)(1−λ)
Y

= α(1− α)(1−α)(1−λ)νijνjP
Y λ−σ
j Aλ−1

ij P
X̃α(1−λ)−1
ij Y (1−α)(1−λ)+1K−(1−α)(1−λ)

(56)

where the second line is derived following the same steps as for equation (51) and the

third equality follows from RKK = (1− α)Y .

Same as in the closed economy version, firm ω chooses to adopt AI if:

1

ηj

( ηj
ηj − 1

1

zij(ω)

(
θj
RM
i

γM
+ (1− θj)

wi
γL

))1−ηj
P
X̃ηj
ij X̃ij − fM ≥ 1

ηj

( ηj
ηj − 1

1

zij(ω)

wi
γL

)1−ηj
P
X̃ηj
ij X̃ij

(57)

Simplifying equation (57):

Ω̃jνjνijP
Y λ−σ
j Aλ−1

ij P
X̃α(1−λ)−1+ηj
ij Y (1−α)(1−λ)+1zij(ω)

ηj−1((θj(1−∆i) + (1− θj))
1−ηj − 1)

(wi
γL

)1−ηj
≥ fM

(58)

where Ω̃j := η
−ηj
j (ηj − 1)ηj−1α(1− α)(1−α)(1−λ)K−(1−α)(1−λ).

Therefore, firm’s adoption decision follows a cut-off rule z∗ij, where firms with produc-

tivity zij(ω) ≥ z∗ij adopt AI and those with productivity zij(ω) < z∗ij do not. The cut-off

value of productivity z∗ij is:

z∗ij =
( fM

Ω̃jνjνijP
Y λ−σ
j Aλ−1

ij P
X̃α(1−λ)−1+ηj
ij Y (1−α)(1−λ)+1((θj(1−∆i) + (1− θj))1−ηj − 1)

) 1
ηj−1 wi

γL

(59)
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Recall that:

P X̃
ij =

wi
γL

ηj
ηj − 1

( ϕj
ϕj − ηj + 1

) 1
1−ηj

(
1 + (Γ

1−ηj
ij − 1)z

∗ηj−ϕj−1
ij

) 1
1−ηj (60)

sLij =
(ηj − 1

ηj

)(1 + ((1− θj)Γ
−ηj
ij − 1)z

∗ηj−ϕj−1
ij

1 + (Γ
1−ηj
ij − 1)z

∗ηj−ϕj−1
ij

)
(61)

Therefore, if (i) γM
γL

∝ RMi
wi

, (ii) νij ∝ A1−λ
ij , (iii) fM ∝ w

α(1−λ)
i , then z∗ij = z∗j and sLij = sLj

for all i.

Under the above three conditions (Assumption 1 in Section 5.2), and let 1−∆i =
RMi γL
wiγM

=

γ ≤ 126 (by condition (i)), then Γij = Γj = θjγ+1− θj. The cut-off value of productivity

is z∗ij = z∗j :

z∗j ∝
( 1

P Y λ−σ
j

(
1 + (Γ

1−ηj
j − 1)z

∗ηj−ϕj−1
j

)α(1−λ)−1+ηj
1−ηj Y (1−α)(1−λ)+1(Γ

1−ηj
j − 1)

) 1
ηj−1

(62)

Moreover,

P X̃
ij =

wi
γL

ηj
ηj − 1

( ϕj
ϕj − ηj + 1

) 1
1−ηj

(
1 + (Γ

1−ηj
j − 1)z

∗ηj−ϕj−1
j

) 1
1−ηj (63)

sLij = sLj =
(ηj − 1

ηj

)(1 + ((1− θj)Γ
−ηj
j − 1)z

∗ηj−ϕj−1
ij

1 + (Γ
1−ηj
j − 1)z

∗ηj−ϕj−1
ij

)
(64)

In addition to Assumption 1, together with (i) θj = θ0, ηj = η, and ϕj = ϕ, (ii) νj ∝
P Y σ−λ
j , equation (59) becomes:

z∗ ∝
(
1 + (Γ1−η − 1)z∗η−ϕ−1

)α(1−λ)−1+η

(1−η)2
Y

(1−α)(1−λ)+1
1−η (Γ1−η − 1)

1
1−η (65)

where Γ = θ0γ + 1− θ0. Equation (65) suggests that z∗ij = z∗, for all i and j. Moreover,

from (60) and (61),
P X̃ij

P X̃kj
= wi

wk
and sLij = sL for all i, j, and k.

Note that when θj = θ0 and ∆i = 1− γ:

dΓj = −(1− γ)dθj (66)

26∆i ≥ 0 implies that γ ≤ 1.
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Totally differentiating (65):

d ln z∗j =
α(1− λ)− 1 + η

(1− η)2
z∗η−ϕ−1

1 + (Γ1−η − 1)z∗η−ϕ−1
((1− η)Γ−ηdΓj + (Γ1−η − 1)(η − ϕ− 1)d ln z∗j )

+
(1− α)(1− λ) + 1

1− η
d lnY +

Γ−η

Γ1−η − 1
dΓj +

λ− σ

1− η
d lnP Y

j

=
α(1− λ)− 1 + η

(1− η)2
z∗η−ϕ−1

1 + (Γ1−η − 1)z∗η−ϕ−1
((1− η)Γ−η(γ − 1)dθj + (Γ1−η − 1)(η − ϕ− 1)d ln z∗j )

+
(1− α)(1− λ) + 1

1− η
d lnY +

Γ−η

Γ1−η − 1
(γ − 1)dθj +

λ− σ

1− η
d lnP Y

j

= −
(α(1− λ)− 1 + η

1− η

z∗η−ϕ−1

1 + (Γ1−η − 1)z∗η−ϕ−1
+

1

Γ1−η − 1

)
Γ−η(1− γ)dθj

+
α(1− λ)− 1 + η

(1− η)2
z∗η−ϕ−1

1 + (Γ1−η − 1)z∗η−ϕ−1
(Γ1−η − 1)(η − ϕ− 1)d ln z∗j

+
(1− α)(1− λ) + 1

1− η
d lnY +

λ− σ

1− η
d lnP Y

j

(67)

where the second equality follows from equation (66).

Let ωz := z∗η−ϕ−1

1+(Γ1−η−1)z∗η−ϕ−1 . Rearranging equation (67):

dθj = φzd ln z∗j + φY d lnY + φP
Y

d lnP Y
j (68)

where φz :=
α(1−λ)−1+η

(1−η)2
ωz(Γ1−η−1)(η−ϕ−1)−1

ΛzΓ−η(1−γ) , φY :=
(1−α)(1−λ)+1

1−η
Λz

, φP
Y

:=
λ−σ
1−η
Λz

, and Λz :=
α(1−λ)−1+η

1−η ωz + 1
Γ1−η−1

.

Differentiating equation (60):

d lnPX
ij = αd lnP X̃

ij + (1− α)d lnRK

= α(d lnwi

+
1

1− η

z∗η−ϕ−1

1 + (Γ1−η − 1)z∗η−ϕ−1
((1− η)Γ−η(γ − 1)dθj

+ (Γ1−η − 1)(η − ϕ− 1)d ln z∗j ) + (1− α)d lnRK

= −αωzΓ−η(1− γ)dθj + αd lnwi

+
α

1− η
ωz(Γ1−η − 1)(η − ϕ− 1)d ln z∗j + (1− α)d lnRK

= αµzd ln z∗j + αµY d lnY + αµP
Y

d lnP Y
j + αd lnwi + (1− α)d lnRK

(69)

where µz := −ωzΓ−η(1 − γ)φz + 1
1−ηω

z(Γ1−η − 1)(η − ϕ − 1), µY := −ωzΓ−η(1 − γ)φY ,

and µP
Y
:= −ωzΓ−η(1−γ)φPY . The third equality follows from plugging in equation (66).
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Differentiating equation (61):

dsLj =
z∗η−ϕ−1

1 + ((1− θ0)Γ−η − 1)z∗η−ϕ−1
(−Γ−ηdθj − (1− θ0)ηΓ

−η−1dΓj

+ ((1− θ0)Γ
−η − 1)(η − ϕ− 1)d ln z∗j )

− z∗η−ϕ−1

1 + (Γ1−η − 1)z∗η−ϕ−1
((1− η)Γ−ηdΓj + (Γ1−η − 1)(η − ϕ− 1)d ln z∗j )

= −ωsΓ−ηdθj − (ωs(1− θ0)ηΓ
−η−1 + (1− η)ωzΓ−η)dΓj

+ (η − ϕ− 1)(ωs((1− θ0)Γ
−η − 1)− ωz(Γ1−η − 1))d ln z∗j

= (−ωsΓ−η + (1− γ)ωs(1− θ0)ηΓ
−η−1 + (1− γ)(1− η)ωzΓ−η)dθj

+ (η − ϕ− 1)(ωs((1− θ0)Γ
−η − 1)− ωz(Γ1−η − 1))d ln z∗j

= τ zd ln z∗j + τY d lnY + τP
Y

d lnP Y
j

(70)

where ωs := z∗η−ϕ−1

1+((1−θ0)Γ−η−1)z∗η−ϕ−1 , τ
z := (−ωsΓ−η+(1− γ)ωs(1− θ0)ηΓ

−η−1+(1− γ)(1−
η)ωzΓ−η)φz + (η − ϕ − 1)(ωs((1 − θ0)Γ

−η − 1) − ωz(Γ1−η − 1)), τY := (−ωsΓ−η + (1 −
γ)ωs(1 − θ0)ηΓ

−η−1 + (1 − γ)(1 − η)ωzΓ−η)φY , and τP
Y

:= (−ωsΓ−η + (1 − γ)ωs(1 −
θ0)ηΓ

−η−1 + (1− γ)(1− η)ωzΓ−η)φP
Y
.

B.2.3 Relative Regional Effect

Assume that Assumption 2 holds, so that z∗ij = z∗ and sLij = sL for all i and j.

Note that the change in household income is:

d ln(wiLi + χΠ
i Π) =

wiLi
wiLi + χΠ

i Π
(d lnwi + d lnLi) +

(
1− wiLi

wiLi + χΠ
i Π

)
d lnΠ

=

∑
k wkLk∑

k wkLk +Π
(d lnwi + d lnLi) +

(
1−

∑
k wkLk∑

k wkLk +Π

)
d lnΠ

=
(
1− χ+ χ

αsL

1− ι

)
(d lnwi + d lnLi) +

(
χ− χ

αsL

1− ι

)
d lnΠ

= ωL(d lnwi + d lnLi) + (1− ωL)d lnΠ

(71)

where ι =
∑
i Ii
Y

= α(1−sL)
1+κ

is the aggregate investment-to-output ratio and ωL := 1− χ +

χαs
L

1−ι .

Differentiating equation (47) and plugging in equation (71):

(χ+ (1− χ)ψ)d lnwi = ψωL(d lnwi + d lnLi) + ψ(1− ωL)d lnΠ + εd lnLi (72)
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Differentiating (48):

d lnRM
i = κd lnMi (73)

Differentiating (51):

d lnwi + d lnLi = ρd lnY + (1− ρ)(ωL(d lnwi + d lnLi) + (1− ωL)d lnΠ)

+
∑
j

lijd ln s
L
j + (1− λ)

∑
j

lijd lnP
X
ij + (λ− σ)

∑
j

lijd lnP
Y
j

(74)

where ρ is the baseline share of employment in the tradable sector and lij is the share of

employment of industry j in total employment in commuting zone i.

Using the price index (49) and differentiating:

d lnP Y
j =

∑
k

νkj

(PX
kj

P Y
j

)1−λ
d lnPX

kj

=
∑
k

νkj

(PX
kj

P Y
j

)1−λ(
αµzd ln z∗j + αµY d lnY + αµP

Y

d lnP Y
j + αd lnwk + (1− α)d lnRK

)
= αµzd ln z∗j + αµY d lnY + αµP

Y

d lnP Y
j + (1− α)d lnRK +

∑
k

νkj

(PX
kj

P Y
j

)1−λ
αd lnwk

(75)

where the second equality follows from plugging in equation (69).

Rearranging:

d lnP Y
j =

1

1− αµPY

(
αµzd ln z∗j + αµY d lnY + (1− α)d lnRK +

∑
k

νkj

(PX
kj

P Y
j

)1−λ
αd lnwk

)
(76)

Note that under Pareto distribution, the share of AI-adopting firms in industry j is

πfj := 1−G(z∗j ) = z∗−ϕj , hence d ln πfj = −ϕd ln z∗j and dπ
f
j = −ϕπfd ln z∗j = −ϕz∗−ϕd ln z∗j .

Therefore, the relationship between the change in the share of AI-adopting firms dπfj and

the adoption productivity cut-off is:

d ln z∗j = −1

ϕ
z∗ϕdπfj (77)

76



Plugging equation (76) into (74):

d lnwi + d lnLi = ρd lnY + (1− ρ)(ωL(d lnwi + d lnLi) + (1− ωL)d lnΠ)

+
∑
j

lij(τ
zd ln z∗j + τY d lnY + τP

Y

d lnP Y
j )

+ (1− λ)
∑
j

lij(αµ
zd ln z∗j + αµY d lnY + αµP

Y

d lnP Y
j + αd lnwi + (1− α)d lnRK)

+ (λ− σ)
∑
j

lijd lnP
Y
j

= ρ(1 + τY + (1− λ)αµY )d lnY + (1− ρ)(ωL(d lnwi + d lnLi) + (1− ωL)d lnΠ)

+ (τ z + (1− λ)αµz)
∑
j

lijd ln z
∗
j + ρ(1− λ)αd lnwi + ρ(1− λ)(1− α)d lnRK

+ (τP
Y

+ (1− λ)αµP
Y

+ (λ− σ))
∑
j

lijd lnP
Y
j

= ρ
(
1 + τY + (1− λ)αµY +

τP
Y
+ (1− λ)αµP

Y
+ (λ− σ)

1− αµPY
αµY

)
d lnY

+ (1− ρ)(ωL(d lnwi + d lnLi) + (1− ωL)d lnΠ)

+
(
τ z + (1− λ)αµz +

τP
Y
+ (1− λ)αµP

Y
+ (λ− σ)

1− αµPY
αµz

)∑
j

lijd ln z
∗
j

+ ρ(1− λ)αd lnwi + ρ
(
(1− λ)(1− α) +

τP
Y
+ (1− λ)αµP

Y
+ (λ− σ)

1− αµPY
(1− α)

)
d lnRK

+Gi,US

= ρ
(
1 + τY + (1− λ)αµY +

τP
Y
+ (1− λ)αµP

Y
+ (λ− σ)

1− αµPY
αµY

)
d lnY

+ (1− ρ)(ωL(d lnwi + d lnLi) + (1− ωL)d lnΠ)

−
(
τ z + (1− λ)αµz +

τP
Y
+ (1− λ)αµP

Y
+ (λ− σ)

1− αµPY
αµz

)z∗ϕ
ϕ

∑
j

lijdπ
f
j

+ ρ(1− λ)αd lnwi + ρ
(
(1− λ)(1− α) +

τP
Y
+ (1− λ)αµP

Y
+ (λ− σ)

1− αµPY
(1− α)

)
d lnRK

+Gi,US

(78)

where Gi,US := τP
Y
+(1−λ)αµPY +(λ−σ)

1−αµPY
∑

j lij
∑

k νkj

(
PXkj
PYj

)1−λ
αd lnwk. The last equality uses

equation (77).
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Differentiating (52):

d lnRM
i + d lnMi =d lnY − 1

ρ

sL

η−1
η

− sL

∑
j

lijd ln s
L
j +

1

ρ
(1− λ)

∑
j

lijd lnP
X
ij +

1

ρ
(λ− σ)

∑
j

lijd lnP
Y
j

=d lnY − 1

ρ

sL

η−1
η

− sL

∑
j

lij(τ
zd ln z∗j + τY d lnY + τP

Y

d lnP Y
j )

+
1

ρ
(1− λ)

∑
j

lij(αµ
zd ln z∗j + αµY d lnY + αµP

Y

d lnP Y
j + αd lnwi + (1− α)d lnRK)

+
1

ρ
(λ− σ)

∑
j

lijd lnP
Y
j

=
(
1− sL

η−1
η

− sL
τY + (1− λ)αµY

)
d lnY − 1

ρ

( sL

η−1
η

− sL
τz − (1− λ)αµz

)∑
j

lijd ln z
∗
j

+(1− λ)αd lnwi + (1− λ)(1− α)d lnRK

−1

ρ

( sL

η−1
η

− sL
τP

Y − (1− λ)αµP
Y − (λ− σ)

)∑
j

lijd lnP
Y
j

=
(
1− sL

η−1
η

− sL
τY + (1− λ)αµY −

sL
η−1
η

−sL τ
PY − (1− λ)αµP

Y − (λ− σ)

1− αµPY
αµY

)
d lnY

−1

ρ

( sL

η−1
η

− sL
τz − (1− λ)αµz +

sL
η−1
η

−sL τ
PY − (1− λ)αµP

Y − (λ− σ)

1− αµPY
αµz

)∑
j

lijd ln z
∗
j

+(1− λ)αd lnwi

+
(
(1− λ)(1− α)−

sL
η−1
η

−sL τ
PY − (1− λ)αµP

Y − (λ− σ)

1− αµPY
(1− α)

)
d lnRK

−1

ρ
Hi,US

=
(
1− sL

η−1
η

− sL
τY + (1− λ)αµY −

sL
η−1
η

−sL τ
PY − (1− λ)αµP

Y − (λ− σ)

1− αµPY
αµY

)
d lnY

+
1

ρ

( sL

η−1
η

− sL
τz − (1− λ)αµz +

sL
η−1
η

−sL τ
PY − (1− λ)αµP

Y − (λ− σ)

1− αµPY
αµz

)z∗ϕ
ϕ

∑
j

lijdπ
f
j

+(1− λ)αd lnwi

+
(
(1− λ)(1− α)−

sL
η−1
η

−sL τ
PY − (1− λ)αµP

Y − (λ− σ)

1− αµPY
(1− α)

)
d lnRK

−1

ρ
Hi,US

(79)
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where Hi,US :=

sL

η−1
η −sL

τP
Y −(1−λ)αµPY −(λ−σ)

1−αµPY
∑

j lij
∑

k νkj

(
PXkj
PYj

)1−λ
αd lnwk.

Differentiating (53):

d lnRK = d ln dY (80)

Equations (72), (73), (78), (79), (80) define a system of 5 linear equations with 5 un-

knowns: d lnLi, d lnwi, d lnR
K , d lnRM

i , d lnMi.

B.2.4 Aggregate Effect

Define aggregate (average) US employment and wage as d lnL =
∑

i χ
w
i d lnLi and d lnw =∑

i χ
w
i d lnwi, where χ

w
i is the share of national wage bill for commuting zone i. Similarly,

d lnRM =
∑

i χ
w
i d lnR

M
i and d lnM =

∑
i χ

w
i d lnMi.

Assume that Assumption 2 holds, so that z∗ij = z∗ and sLij = sL for all i and j. Moreover,

the initial allocation of non-labor income satisfies χΠ
i = wiLi∑

k wkLk
. Then:

χwi =
wiLi∑
k wkLk

=
wiL

T
i∑

k wkL
T
k

=
αsL

∑
j P

X
ij Xij

αsLY

=

∑
j P

X
ij Xij

Y

(81)

where LTi denotes total employment in the tradable sector and Y is aggregate output in

the tradable sector.

Aggregating equation (72) over all commuting zones i, weighed by χwi :

(χ+ (1− χ)ψ)d lnw = ψωL(d lnw + d lnL) + ψ(1− ωL)d lnΠ + εd lnL (82)

Note that
∑

iwiLi +Π = Y − I, differentiating:

ωL(d lnw + d lnL) + (1− ωL)d lnΠ =
1

1− ι
d lnY − ι

1− ι
(1 + κ)d lnM (83)
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where ωL :=
∑
k wkLk∑

k wkLk+Π
= 1− χ+ χαs

L

1−ι , with ι =
∑
i Ii
Y

=
α( η−1

η
−sL)

1+κ
.

Plugging (83) into (82):

(χ+ (1− χ)ψ)d lnw =
ψ

1− α( η−1
η

−sL)
1+κ

(d lnY − α(
η − 1

η
− sL)d lnM) + εd lnL (84)

Aggregating equation (73) over all commuting zones i, weighted by χwi :

d lnRM = κd lnM (85)

Aggregating equation (74):

d lnw + d lnL = ρd lnY + (1− ρ)(ωL(d lnw + d lnL) + (1− ωL)d lnΠ)

+
∑
i

χwi
∑
j

lijd ln s
L
j + (1− λ)

∑
i

∑
j

χwi lijd lnP
X
ij + (λ− σ)

∑
i

∑
j

χwi lijd lnP
Y
j

(86)

Note that: ∑
i

∑
j

χwi lijd lnP
Y
j = ρ

∑
i

∑
j

χwi χijd lnP
Y
j

= ρ
∑
j

∑
i

∑
h P

X
ihXih

Y

PX
ij Xij∑
h P

X
ihXih

d lnP Y
j

= ρ
∑
j

∑
i

PX
ij Xij

Y
d lnP Y

j

= ρ
∑
j

P Y
j Yj

Y
d lnP Y

j

= 0

(87)

as all tradable industries have the same labor intensity, so lij = ρχij, where χij denotes

the value-added share of industry j in the total tradable sector value-added share of com-

muting zone i. Yj is the total output of industry j, such that P Y
j Yj =

∑
i P

X
ij Xij. The

last equality follows from differentiating the ideal price index (50), which is normalized

to 1.
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Similarly, ∑
i

∑
j

χwi lijd lnP
X
ij = ρ

∑
j

∑
i

χwi χijd lnP
X
ij

= ρ
∑
j

∑
i

∑
h P

X
ihXih

Y

PX
ij Xij∑
h P

X
ihXih

d lnPX
ij

= ρ
∑
j

∑
i

PX
ij Xij

Y
d lnPX

ij

= ρ
∑
j

P Y
j Yj

Y

∑
i

PX
ij Xij

P Y
j Yj

d lnPX
ij

= ρ
∑
j

P Y
j Yj

Y
d lnP Y

j

= 0

(88)

where the second last line follows from differentiating the price index (49) and the last

line follows from differentiating the ideal price index (50).

Hence, by equation (88) and note that lij = ρχij:

αµY d lnY + αd lnw + (1− α)d lnRK =
αµz

ρϕ
z∗ϕ

∑
i

χwi
∑
j

lijdπ
f
j (89)

Moreover, equation (86) becomes:

d lnw + d lnL = ρd lnY +
1− ρ

1− α( η−1
η

−sL)
1+κ

(d lnY − α(
η − 1

η
− sL)d lnM)

+
∑
i

χwi
∑
j

lij(τ
zd ln z∗j + τY d lnY + τP

Y

d lnP Y
j )

= ρ(1 + τY )d lnY +
1− ρ

1− α( η−1
η

−sL)
1+κ

(d lnY − α(
η − 1

η
− sL)d lnM)

− τ z

ϕ
z∗ϕ

∑
i

χwi
∑
j

lijdπ
f
j

(90)
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Aggregating equation (79):

d lnRM + d lnM = d lnY − 1

ρ

sL

η−1
η

− sL

∑
i

χwi
∑
j

lijd ln s
L
j

= d lnY − 1

ρ

sL

η−1
η

− sL

∑
i

χwi
∑
j

lij(τ
zd ln z∗j + τY d lnY + τP

Y

d lnP Y
j )

= (1− sL

η−1
η

− sL
τY )d lnY +

τ z

ρϕ
z∗ϕ

sL

η−1
η

− sL

∑
i

χwi
∑
j

lijdπ
f
j

(91)

Finally, differentiating (53):

d lnRK = d ln dY (92)

Equations (84), (85), (89), (90), (91), (92) define a system of 6 linear equations with 6

unknowns: d lnL, d lnw, d lnRK , d lnRM , d lnM , d lnY .

I now solve for the above system of equations. Starting with equation (89) and note

that d lnRK = d lnY , express d lnY in terms of d lnw:

d lnY =
αµz

ρϕ(αµY + 1− α)
z∗ϕ

∑
i

χwi
∑
j

lijdπ
f
j −

α

αµY + 1− α
d lnw (93)

As d lnRM = κd lnM , equation (91) gives:

d lnM =
1− sL

η−1
η

−sL τ
Y

1 + κ
d lnY +

τ z

ρϕ(1 + κ)
z∗ϕ

sL

η−1
η

− sL

∑
i

χwi
∑
j

lijdπ
f
j

(94)

Therefore,

d lnY − α(
η − 1

η
− sL)d lnM =

(
1−

α(η−1
η

− sL)− αsLτY

1 + κ

)
d lnY

− αsLτ z

ρϕ(1 + κ)
z∗ϕ

∑
i

χwi
∑
j

lijdπ
f
j

= −
1 + κ− α(η−1

η
− sL) + αsLτY

1 + κ

α

αµY + 1− α
d lnw

+
(1 + κ− α(η−1

η
− sL) + αsLτY

1 + κ

αµz

ρϕ(αµY + 1− α)
− αsLτ z

ρϕ(1 + κ)

)
z∗ϕ

∑
i

χwi
∑
j

lijdπ
f
j

(95)
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Given (93) and (95), rearranging equation (84) gives a relationship between d lnw and

d lnL:

d lnw =
ε

χ+ (1− χ)ψ + αψ
αµY +1−α

1+κ−α( η−1
η

−sL)+αsLτY

1+κ−α( η−1
η

−sL)

d lnL

+

ψ

1+κ−α( η−1
η

−sL)

(
αµz

1+κ−α( η−1
η

−sL)+αsLτY

ρϕ(αµY +1−α) − αsLτz

ρϕ

)
χ+ (1− χ)ψ + αψ

αµY +1−α
1+κ−α( η−1

η
−sL)+αsLτY

1+κ−α( η−1
η

−sL)

z∗ϕ
∑
i

χwi
∑
j

lijdπ
f
j

= ζLd lnL+ ζπz∗ϕ
∑
i

χwi
∑
j

lijdπ
f
j

(96)

where ζL := ε

χ+(1−χ)ψ+ αψ

αµY +1−α

1+κ−α( η−1
η −sL)+αsLτY

1+κ−α( η−1
η −sL)

and ζπ :=

ψ

1+κ−α( η−1
η −sL)

(
αµz

1+κ−α( η−1
η −sL)+αsLτY

ρϕ(αµY +1−α)
−αsLτz

ρϕ

)
χ+(1−χ)ψ+ αψ

αµY +1−α

1+κ−α( η−1
η −sL)+αsLτY

1+κ−α( η−1
η −sL)

.

Equation (90) becomes:

d lnw + d lnL = ρ(1 + τY )d lnY +
1− ρ

ψ
((χ+ (1− χ)ψ)d lnw − εd lnL)− τ z

ϕ
z∗ϕ

∑
i

χwi
∑
j

lijdπ
f
j

=
((1− ρ)χ

ψ
+ (1− ρ)(1− χ)− ρ(1 + τY )α

αµY + 1− α

)
d lnw − (1− ρ)ε

ψ
d lnL

+
( (1 + τY )αµz

ϕ(αµY + 1− α)
− τ z

ϕ

)
z∗ϕ

∑
i

χwi
∑
j

lijdπ
f
j

(97)

where the first equality follows from (84) and the second equality follows from (93).

Rearranging and plugging in equation (96):

d lnL =
ψ

ψ + (1− ρ)ε

((1− ρ)χ

ψ
− χ− ρ+ χρ− ρ(1 + τY )α

αµY + 1− α

)
d lnw

+
ψ

ψ + (1− ρ)ε

( (1 + τY )αµz

ϕ(αµY + 1− α)
− τ z

ϕ

)
z∗ϕ

∑
i

χwi
∑
j

lijdπ
f
j

=
ψ

ψ + (1− ρ)ε

((1− ρ)χ

ψ
− χ− ρ+ χρ− ρ(1 + τY )α

αµY + 1− α

)
ζLd lnL+

ψ

ψ + (1− ρ)ε(((1− ρ)χ

ψ
− χ− ρ+ χρ− ρ(1 + τY )α

αµY + 1− α

)
ζπ +

(1 + τY )αµz

ϕ(αµY + 1− α)
− τ z

ϕ

)
z∗ϕ

∑
i

χwi
∑
j

lijdπ
f
j

(98)
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This gives a relationship between d lnL and
∑

i χ
w
i

∑
j lijdπ

f
j :

d lnL =

ψ
ψ+(1−ρ)ε

((
(1−ρ)χ
ψ

− χ− ρ+ χρ− ρ(1+τY )α
αµY +1−α

)
ζπ + (1+τY )αµz

ϕ(αµY +1−α) −
τz

ϕ

)
1− ψ

ψ+(1−ρ)ε

(
(1−ρ)χ
ψ

− χ− ρ+ χρ− ρ(1+τY )α
αµY +1−α

)
ζL

z∗ϕ
∑
i

χwi
∑
j

lijdπ
f
j

=

(
(1−ρ)χ
ψ

− χ− ρ+ χρ− ρ(1+τY )α
αµY +1−α

)
ζπ + (1+τY )αµz

ϕ(αµY +1−α) −
τz

ϕ

1 + (1−ρ)(ε−χζL)
ψ

+
(
χ+ ρ− χρ+ ρ(1+τY )α

αµY +1−α

)
ζL

z∗ϕ

︸ ︷︷ ︸
aggregate effect

∑
i

χwi
∑
j

lijdπ
f
j

(99)

where the coefficient in front of
∑

i χ
w
i

∑
j lijdπ

f
j is the aggregate effect of AI exposure on

employment.

The change in investment-to-output ratio dι is:

dι = ιd ln dι

= −
α(η−1

η
− sL)

1 + κ

sL

η−1
η

− sL

∑
i

χwi
∑
j

lijd ln s
L
j

= −
α(η−1

η
− sL)

1 + κ

sL

η−1
η

− sL

∑
i

χwi
∑
j

lij(τ
zd ln z∗j + τY d lnY + τP

Y

d lnP Y
j )

= −
α(η−1

η
− sL)

1 + κ

sL

η−1
η

− sL

(
ρτY d lnY − τ z

ϕ
z∗ϕ

∑
i

χwi
∑
j

lijdπ
f
j

)
(100)

The change in overall labor share dωL is:

dωL = ωLd lnωL

= (1− χ+ χ
αsL

1− ι

)(∑
i

χwi
∑
j

lijd ln s
L
j +

ι

1− ι
d ln ι

)
= (1− χ+ χ

αsL

1− ι

)(∑
i

χwi
∑
j

lij(τ
zd ln z∗j + τY d lnY + τP

Y

d lnP Y
j ) +

ι

1− ι
d ln ι

)
= (1− χ+ χ

αsL

1− ι

)(
ρτY d lnY − τ z

ϕ
z∗ϕ

∑
i

χwi
∑
j

lijdπ
f
j +

ι

1− ι
d ln ι

)
(101)

84



B.3 Parameterization

B.3.1 Shape Parameter of the Pareto Distribution

Sales of a firm with productivity zij(ω) is: rij(ω) := pij(ω)xij(ω) = pij(ω)
1−ηP X̃η

ij X̃ij.

Average sales is:

E(r) = P X̃η
ij X̃ij

(wi
γL

)1−η(∫ z∗

1

zη−1dG(z) + Γ1−η
∫ ∞

z∗
zη−1dG(z)

)
= P X̃η

ij X̃ij

(wi
γL

)1−η ϕ

ϕ− η + 1
(1 + (Γ1−η − 1)z∗η−ϕ−1)

(102)

Note that when ϕ > 2(η − 1):

E(r2) =
(
P X̃η
ij X̃ij

(wi
γL

)1−η)2(∫ z∗

1

z2η−2dG(z) + Γ2−2η

∫ ∞

z∗
z2η−2dG(z)

)
=

(
P X̃η
ij X̃ij

(wi
γL

)1−η)2 ϕ

ϕ− 2η + 2
(1 + (Γ2−2η − 1)z∗2η−ϕ−2)

(103)

Therefore, the standard deviation of sales is:

SDV (r) = E(r2)− E(r)2

= P X̃η
ij X̃ij

(wi
γL

)1−η( ϕ

ϕ− 2η + 2
(1 + (Γ2−2η − 1)z∗2η−ϕ−2)

−
( ϕ

ϕ− η + 1

)2

(1 + (Γ1−η − 1)z∗η−ϕ−1)2
) 1

2

(104)

ϕ is chosen to match the 2010 mean-to-standard-deviation ratio of firm sales E(r)
SDV (r)

=

0.212 from Compustat. Denote πf0 as the initial fraction of AI-adopting firms, the cor-

responding adoption cut-off productivity z∗ = π
f− 1

ϕ

0 . Moreover, let θ0 denote the initial

value for the set of AI-automable tasks, ϕ solves the following equation:

ϕ
ϕ−η+1

(1 + (Γ1−η − 1)z∗η−ϕ−1)(
ϕ

ϕ−2η+2
(1 + (Γ2−2η − 1)z∗2η−ϕ−2)−

(
ϕ

ϕ−η+1

)2

(1 + (Γ1−η − 1)z∗η−ϕ−1)2
) 1

2

=

ϕ
ϕ−η+1

(1 + (Γ1−η − 1)π
f ϕ−η+1

ϕ

0 )(
ϕ

ϕ−2η+2
(1 + (Γ2−2η − 1)π

f ϕ−2η+2
ϕ

0 )−
(

ϕ
ϕ−η+1

)2

(1 + (Γ1−η − 1)π
f ϕ−η+1

ϕ

0 )2
) 1

2

=0.212

(105)

Under the baseline assumption πf0 = 10−5 and the calibrated θ0, ϕ is 10.13.
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B.3.2 Preferences

Household first-order condition implies that (negative) marginal propensity of leisure is:

wi
dLi
dCi

= −ψ
ε

wiLi
Ci

= −ψ
ε
ωL (106)

The third equality is from the definition of ωL (labor share in total value-added). Imbens

et al. (2001) estimate that the marginal propensity of leisure (of one additional dollar) is

0.1, therefore ψ
ε
ωL = 0.1.

As d lnLi = β̂IVL
∑

j lijdπ
f
j and d lnwi = β̂IVw

∑
j lijdπ

f
j , when d lnY = d lnΠ = Gi,US = 0,

equation (72) becomes:

(χ+ (1− χ)ψ − ψωL)β̂IVw = (ψωL + ε)β̂IVL (107)

Combining with ψ
ε
ωL = 0.1 yields:

ε =
χβ̂IVw

0.1(β̂IVw + β̂IVL )− 0.1(1−χ)
ωL

β̂IVw + β̂IVL
(108)

ψ =
0.1

ωL
χβ̂IVw

0.1(β̂IVw + β̂IVL )− 0.1(1−χ)
ωL

β̂IVw + β̂IVL
(109)

B.3.3 Relative Regional Effect

I derive the structural expression for β̂IV , which helps informing the initial set of AI-

automable tasks θ0.

When d lnY = d lnΠ = Gi,US = 0, equation (78) becomes:

(1− (1− ρ)ωL)d lnLi = −
(
τ z + (1− λ)αµz +

τP
Y
+ (1− λ)αµP

Y
+ (λ− σ)

1− αµPY
αµz

)z∗ϕ
ϕ

∑
j

lijdπ
f
j

+ (ρ(1− λ)α− 1 + (1− ρ)ωL)d lnwi

(110)

Equation (72) implies that:

(χ+ (1− χ)ψ − ψωL)d lnwi = (ψωL + ε)d lnLi (111)
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Combining equations (110) and (72) give:

d lnLi = −

(
τ z + (1− λ)αµz + τP

Y
+(1−λ)αµPY +(λ−σ)

1−αµPY
αµz

)
z∗ϕ

ϕ

(1− (1− ρ)ωL)− (ψωL+ε)(ρ(1−λ)α−1+(1−ρ)ωL)
(χ+(1−χ)ψ−ψωL)︸ ︷︷ ︸

=β̂IVL , relative regional effect

∑
j

lijdπ
f
j (112)

Therefore, the calibration procedure requires that θ0 matches:

−

(
τ z + (1− λ)αµz + τP

Y
+(1−λ)αµPY +(λ−σ)

1−αµPY
αµz

)
z∗ϕ

ϕ

(1− (1− ρ)ωL)− (ψωL+ε)(ρ(1−λ)α−1+(1−ρ)ωL)
(χ+(1−χ)ψ−ψωL)

= β̂IVL = −7.511
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