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Abstract

Industrial policies (IPs) are on the rise. The most common motive for pursuing IPs is to boost strategic

competitiveness of the targeted products. Leveraging a novel database of industrial policies and using the

local projection difference-in-differences approach, this paper examines the dynamic relationship between

IPs and trade competitiveness. Our results point to a nuanced picture. On average, products targeted by

IPs experience a larger increase in competitiveness than non-targeted ones. However, there is substantial

heterogeneity across different types of product and policy instruments. The average effect is driven by

initially competitive products. Turning to policy instruments, domestic subsidies are associated with

short-term improvements in trade competitiveness, whereas export incentives are linked to medium-term

improvements in competitiveness. Finally, we focus on three widely discussed value chains— solar photo-

voltaic, wind turbines, and electric vehicles—and present suggestive evidence that IPs can have spillover

effects on non-targeted products through value chain linkages. Our findings for these three value chains

suggest that IPs targeting upstream products are associated with larger improvements in the RCA of

products using these upstream products relative to IPs targeting products at the same value chain stage.
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valuable comments. We also thank Réka Juhász and Nathan Lane for sharing the data. The views expressed in this paper

are those of the authors and should not be attributed to the IMF, its Executive Board, or its management. All errors are

our own.
†International Monetary Fund. Email: yhuang5@imf.org.
‡International Monetary Fund. Email: sbaquie@imf.org.
§International Monetary Fund. Email: fjaumotte@imf.org.
¶International Monetary Fund. Email: jkim6@imf.org.
‖New York University. Email: yl6586@nyu.edu.

∗∗International Monetary Fund. Email: rmachadoparente@imf.org.
††International Monetary Fund. Email: spienknagura@imf.org.

1

mailto:yhuang5@imf.org
mailto:sbaquie@imf.org
mailto:fjaumotte@imf.org
mailto:jkim6@imf.org
mailto:yl6586@nyu.edu
mailto:rmachadoparente@imf.org
mailto:spienknagura@imf.org


1 Introduction

After falling out of fashion in the aftermath of the 1990s liberalization wave, industrial policies (IPs)

have been widely used by both advanced economies (AEs) and emerging markets (EMs) in recent years,

especially after 2017. This is clearly reflected in the business press, where the number of articles that

mention IP grew from less than 1000 times in 1990 to more than 18000 times in 2019 (Evenett et al.,

2024). While there are arguments in favor of IPs (market failures, economies of scale, and collective

action problems), factors such as limited state capacity and capture by private and political actors, can

hamper IPs’ effectiveness. Moreover, IPs’ historical track record has been mixed. As new economic and

geopolitical challenges loom, a fresh assessment of IPs’ potential economic impacts is warranted.

Do IPs increase competitiveness of their targeted products? This is an important question, as the most

commonly stated motive for IPs is to boost strategic competitiveness,1 constituting over 35% of IPs in

2023 (Evenett et al., 2024). However, whether products targeted by IPs fulfill this stated motive merits

an empirical investigation. In this paper, we focus on one particular type of competitiveness, namely

trade competitiveness. We adopt the definition in Juhász et al. (2023), who focus on national-level eco-

nomic activities and define IP as goal-oriented state actions. The purpose is to shape the composition

of economic activity. Specifically: industrial policy seeks to change the relative prices across sectors or

direct resources towards certain selectively targeted activities (e.g.,exporting, R&D), to shift the long-run

composition of economic activity” (Juhász et al., 2023).

We combine a novel database of IPs (Juhász et al., 2023) with data on trade flows (Gaulier and Zignago,

2010), resulting in a final dataset of HS6-digit products spanning 156 countries between 2009 and 2022.

We use a local projection difference-in-differences (LP-DiD) approach to explore the dynamics between

IPs and trade competitiveness. The richness of the data enables us to explore several dimensions of

heterogeneity in the relationship between IPs and competitiveness, such as the targeted product’s initial

competitiveness, differences across policy instruments, and importance in the green transition. Impor-

tantly, the LP-DiD method alleviates the potential bias from using the traditional difference-in-differences

estimator with two-way fixed effects (DiD-TWFE) in estimating dynamic and heterogeneous treatment

effects under staggered treatment (Dube et al., 2024). For example, previously treated units may be

experiencing delayed effects from their previous treatment because the effects are dynamic. In the tra-

ditional DiD-TWFE, these previously treated units are implicitly used as control groups for the newly

treated units, leading to a biased estimate of the average effect of the control group, and consequently a

biased estimated treatment effect. The LP-DiD approach fits our purpose very well, as country-product

1Strategic competitiveness refers to “the promotion of domestic competitiveness or innovation in a strategic product or

sector” (Evenett et al., 2024). These are policies aimed at enhancing the productivity of a sector that is perceived as being

under-performing. Both Evenett et al. (2024) and this paper find that strategic competitiveness is the most frequent IP

motive.
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pairs could receive multiple IP treatments at different points in time. To the best of our knowledge, our

paper is the first to employ this method to empirically investigate the dynamic relationship between IPs

and competitiveness, both on average, as well as by product characteristics and policy instruments.

Our findings point to a nuanced relationship between IPs and trade competitiveness, as measured by

the Balassa revealed comparative advantage (RCA) index. On average, products that are targeted by

IPs experience a greater increase in competitiveness compared to non-targeted products. The short-term

increase in competitiveness appears to be driven by an increase in the exports of products that were

already in the country’s export basket (intensive margin), while the medium-term increase appears to be

driven by export participation of previously non-exporting products (extensive margin).

However, the average effect masks substantial heterogeneity across products and IP instruments. At

the product level, we find that the positive association between IPs and competitiveness is mostly driven

by products that were globally competitive prior to the introduction of the IP. As for policy instruments,

we focus on the two most popular IP instruments in the data: domestic subsidies and export incentives.

We show that products targeted by domestic subsidies experience a short-term improvement in trade

competitiveness, with effects vanishing after a few years. By contrast, export incentives are associated

with larger medium-term improvements in the trade competitiveness of targeted products compared to

non-targeted ones. These findings are consistent with anecdotal evidence attributing export promotion

strategies, foreign orientation (Cherif and Hasanov, 2019), and competition (Aghion et al., 2016) to IPs’

success in East Asia.

One key distinction between the current IP wave compared to the wave before the 1990s is the growing

share of IPs aimed at addressing climate change concerns. Motivated by this observation, we compare the

relationship between IPs and the RCA of green versus non-green products. Green products are defined

as HS6-digit products critical to the green transition. We compile a list of HS6-digit green products from

six different sources. These sources cover products at different stages of production, from raw materials

to intermediate inputs to final products. The final list contains 869 HS6-digit products. Our results

highlight three noticeable differences for green versus non-green products. First, the positive association

between IPs and competitiveness manifests mostly in the medium-term for green products; whereas the

positive association only appears in the short term for non-green products. Second, unlike non-green

products, the positive long-run gains in RCA for green products are mainly driven by products that

have not yet established comparative advantage in the global market. Third, there is a stronger positive

association between IPs (both subsidies and export incentives) and RCA when IPs target green products,

particularly in the longer horizon.

Finally, we provide suggestive OLS evidence on potential cross-product spillovers of IP for three widely
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discussed value chains: wind turbines, photovoltaic panels, and electric vehicles. There are two main

reasons to focus on these value chains. First, climate mitigation has become a common motive of IPs

(Evenett et al., 2024). Second, data that map HS6-digit products to value chain stage is extremely scarce,

with the exception of Rosenow and Mealy (2024), who compile a mapping between HS6-digit products and

production stages for these three value chains. Our results show that, for these value chains, IPs targeting

upstream products are associated with larger improvements in the RCA of products using these upstream

products compared to those targeting the same value chain stage, while IPs targeting downstream prod-

ucts yield similar effects as those targeting products at the same value chain stage. Intuitively, upstream

IPs may alleviate capacity constraints and benefit downstream products through reductions in input costs.

It should be noted that our analysis is only a partial assessment of IPs’ impact on competitiveness.

By design, our empirical approach compares the relative performance of targeted and non-targeted prod-

ucts. Moreover, the paper does not assess the overall welfare gains and absolute desirability of IPs.

Such assessment would require a structural analysis that fully incorporates general equilibrium effects

and potential retaliatory actions, as in Lashkaripour and Lugovskyy (2023) and Hodge et al. (2024). A

full assessment of IPs’ desirability is challenging due to the lack of information on the size of IPs, and

hence their fiscal costs. Finally, although the LP-DiD approach alleviates certain bias compared to the

standard two-way fixed effects estimator under staggered treatment setting, our results do not necessarily

establish a fully causal relationship between IPs and trade competitiveness due to endogeneity concerns

(e.g., selection bias, reverse causality, endogenous selection into the time of treatment). However, our

results are informative of the expected effects of IPs on a specific outcome, namely trade competitiveness.

Related Literature. Our paper contributes to two strands of literature. First, we contribute to the

growing empirical literature studying the economic impact of IPs. We contribute by offering an empirical

analysis of IPs’ effects from a cross-country perspective. In fact, most papers rely on country-specific

case studies (Juhász et al., 2024; Cherif and Hasanov, 2019). Others leverage detailed information on

state-aid in Europe to gauge the impact of subsidies on firm and labor market performance (Criscuolo

et al., 2019; Brandao-Marques and Toprak, 2024). More recently, a number of studies have leveraged

data stemming from the Global Trade Alert (GTA) project to study the relationship between IPs and

different economic outcomes in a cross-country setting. For example, using the GTA data and following a

similar large language model (LLM) as Juhász et al. (2023), Barwick et al. (2024) study the relationship

between IPs and innovation in the global automobile industry. Moreover, Machado Parente et al. (2025)

analyze the link between IPs and firm performance in a cross-country and cross-industry empirical setting.

Closely related to our work, Rotunno and Ruta (2024) use the GTA database to assess the impacts

of domestic subsidies (both IPs and non-IPs) on trade flows. Apart from the difference in the main policy
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intervention of interest,2 our paper differs from Rotunno and Ruta (2024) along three main dimensions.

First, in addition to studying the average effect of IPs on targeted products, our work explores how these

effects vary for green versus non-green products, and potential cross-product spillovers within the value

chain. We show that IPs targeting green products exhibit different RCA dynamics than IPs targeting

non-green products. This is particularly relevant, as climate mitigation is the second most important

motive for the current wave of IPs. Second, methodologically, our analysis explores the dynamic relation-

ship and uses the LP-DiD approach to tackle potential biases of standard two-way fixed effects estimator

under staggered treatment. Third, the dynamic analysis of different policy instruments allows us to track

the effect of IP by policy instrument over time. The effect of domestic subsidies materializes in the short

term and fades in the longer term, whereas the positive effect takes a longer time to materialize for export

incentives.

Second, our findings complement a long-standing literature on the determinants of RCA. Namely, we

argue that IPs can play a significant role in shaping trade patterns across countries. While prior re-

search has emphasized factor endowments (Romalis, 2004; Bernard et al., 2007), technological capabili-

ties (Hausmann and Rodrik, 2003; Costinot et al., 2012), institutional quality (Levchenko, 2007; Nunn,

2007; Shapiro, 2023), and trade policies (Eaton and Kortum, 2002; Boltho, 2022) as key drivers of RCA,

we provide evidence that other government interventions—such as subsidies and export incentives—can

also influence a country’s trade specialization patterns. Our results suggest that comparative advantage

is not solely determined by underlying economic fundamentals but can be actively shaped by policy,

highlighting the role of IP in shaping global trade patterns.

The rest of the paper is as follows. We present our data sources and document key stylized facts on

the recent wave of IPs in Section 2. Section 3 discusses the empirical strategy. The empirical findings

are in Section 4. Section 5 concludes.

2 Data and Facts

2.1 Data Sources

Our empirical analysis aims to study whether IPs increase the trade competitiveness of targeted products.

To this end, we merge country-product level data on IP counts and trade competitiveness measures. Below

we describe all the different data sources used in the analysis.

2Rotunno and Ruta (2024) focus on domestic subsidies in general, which includes both IPs and non-IPs. Roughly 70-80%

of protectionist domestic subsidies are classified as IPs.
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2.1.1 Data on Industrial Policies

Country-product level IP counts are from Juhász et al. (2023). The authors implement state-of-the-art

machine learning algorithms to classify whether policy announcements in the Global Trade Alert (GTA)

database over the period 2009-2022 qualify as IPs. The GTA is an initiative launched in 2008, which

collects state policy measures and credible announcements that discriminate against foreign commercial

interests (Evenett and Fritz, 2020).

In their machine learning exercise, Juhász et al. (2023) leverage the policy descriptions in the GTA.

The authors focus on national-level economic activities3 and define IP as “goal-oriented state action.

The purpose is to shape the composition of economic activity. Specifically: industrial policy seeks to

change the relative prices across sectors or direct resources towards certain selectively targeted activities

(e.g., exporting, R&D), to shift the long-run composition of economic activity” (Juhász et al., 2023). We

refer interested readers to their paper for more details on IP classification.

In addition to the policy description, the GTA database also contains other useful characteristics for

each policy that are relevant for our analysis. These include the implementing jurisdiction, the HS codes

of targeted products, the type of instrument used, and GTA evaluation. GTA evaluation indicates the

direction of the policy change assessed by GTA experts. There are three categories: red, amber, and

green. Policies with red GTA evaluation are protectionist, as they almost certainly discriminate against

foreign commercial interests. Policies with green GTA evaluation are liberalizing. For example, an elim-

ination of the export bans on rye and mineral fertilizers is classified as liberalizing. Policies with amber

GTA evaluation are ambiguous (“likely involve discrimination against foreign commercial interests”).4

We refine our definition of IPs to incorporate the direction of policy change. Specifically, we restrict our

attention on IPs with a red GTA evaluation, as protectionist IPs are those at the center of the current

policy debate around IPs.

We follow the recommended reporting-lag adjustment by only keeping policies that are announced and

published by GTA within the same calendar year. Such adjustment is necessary to ensure consistent

comparison of policy counts across time. This is because policies are collected in the GTA on a contin-

uous basis. This reporting lag leads to an inflated policy count in earlier years relative to more recent

years, as policies in earlier years have a longer time to be detected and collected.

For each country and product in a given year, we count the number of active IPs: IPs that are an-

nounced but not yet removed. We choose the starting point to be the announcement year rather than

3Specifically, Juhász et al. (2023) exclude sub-national (e.g., province-level in China) policies.
4Among all the GTA policies, which include both IP and non-IP, approximately 80% are protectionist and 15% are

liberalizing. More than 35% of policies are liberalizing for FDI measures, import and export barriers.
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implementation year to account for the role of anticipation. We fill the missing values of active IP counts

with zero if the country has ever had a strictly positive number of active IPs in at least one product

during 2009-2022. Note that this is a stock variable. Therefore, to properly capture the IP shock, which

is a flow variable, one needs to take the first difference. Therefore, the main empirical analysis in Sections

3 and 4 uses the year-to-year change in the number of active IPs to account for the possibility of IP

removals. However, for the descriptive statistics in Section 2.2, we use a slightly different definition of IP

shock — the counts of announced IPs. We choose this definition for ease of interpretation. Note that the

two definitions of “IP shock” are equivalent if there are no policy removals at the country-product pair.5

Although the GTA-derived IP data has decent time and country coverage, thereby allowing for a cross-

country, empirically-grounded evaluation of IP over time, there are several caveats. First, a direct com-

parison between advanced economies (AEs) versus emerging market and developing economies (EMDEs)

may be challenging. It is possible that EMDEs have less transparent and granular policy disclosure and

reporting standards, thereby resulting in an underestimated number of IPs in EMDEs relative to AEs.

Second, as in the case of GTA, the IP database we use only records a subset of IPs, namely those affecting

commercial interests. Third, the database only starts in 2009, and hence may underestimate the stock

of IPs in countries that were active before 2009 but introduced a small number of IPs since then. This

feature may be particularly relevant for some large EMDEs with a historical record of state interventions.

Fourth, the IP database developed by Juhász et al. (2023) focuses on national-level economic activities,

while the implementation of IPs in some countries is fairly decentralized (Goldberg et al., 2024). Fur-

thermore, in certain countries, IPs take the form of indirect incentives, such as subsidized loans provided

by banks, which may not be well reflected in the GTA. Given this, we test the robustness of our main

empirical results by excluding some of the large EMDEs from the sample in Appendix F.1. Fifth, IPs

in Juhász et al. (2023) are only indicator variables and not measures of intensity (e.g., value of the

subsidies). By contrast, approximately a third of the policies in the New Industrial Policy Observatory

(NIPO)6 (Evenett et al., 2024) have an associated subsidy value. Reassuringly, the positive correlation

between the count of IPs and the log of the subsidy value at the country-product level in 2023 (0.52)

suggests that the count of IPs provides an approximation of the size of IP values.

2.1.2 Data on Trade Competitiveness

Our main metric for trade competitiveness is revealed comparative advantage (RCA), proxied by the

Balassa index.7 RCA of a product for a given country is defined as the export share of the product in

5Around 10% of the IPs in the 2009-2022 period were removed.
6The data in NIPO is described in Evenett et al. (2024). The definition of IP in NIPO is slightly different than Juhász

et al. (2023). Moreover, NIPO contains additional information of the policy, such as stated motive and size of subsidy.

However, its short time coverage (only since 2023) limits the scope for cross-country empirical analyses.
7For more details on the Balssa index, see https://unctadstat.unctad.org/EN/RcaRadar.html.
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the country’s total exports, divided by the world’s export share of the product:

RCAcpt =

Xcpt∑
p Xcpt∑
c Xcpt∑

c

∑
p Xcpt

where c is country, p is product, t is year. X is the value of exports. RCA with a value greater than 1

implies that the country exports a relatively higher share of the product compared to the world average,

suggesting that the country is competitive in the particular product. Note that the Balassa index has

drawbacks, as discussed in Leromain and Orefice (2014). Thus, we also use an alternative RCA proposed

by Vollrath (1991)8 to test the robustness of results (Appendix F.4).

To calculate RCA metrics, we extract information of export value from the CEPII BACI database (Gaulier

and Zignago, 2010). BACI provides bilateral trade flow data for 233 countries and 5018 products at the

Harmonized System (HS) 6-digit level. Merging the RCA data with data on IP counts described in 2.1.1

gives a balanced panel of 156 countries and 5018 products for 2009-2022.

2.1.3 IP motives

We follow the machine learning algorithm in Evennett et al. (Forthcoming) to assign motive(s) to all IPs

from Juhász et al. (2023) (see Appendix A for a description). The exercise leverages information on IPs’

stated motives from the New Industrial Policy Observatory (NIPO) dataset, which is only available since

2023.

Since 2023, GTA experts have assigned stated motives to policy interventions, by collecting and re-

viewing statements from official sources or direct quotes from senior officials. One IP can be assigned

more than one motive. We use the NIPO dataset as a starting point to train our machine learning al-

gorithm. We focus on the four most common IP motives: climate mitigation, strategic competitiveness,

geopolitical concerns or national security, and GVC resilience.9

2.1.4 Classification of Green vs. Non-Green Products

To further gain insights about the relationship between IPs and competitiveness, the paper explores po-

tential differences among products related to the green transition (“green products”) and other products

(“non-green products”). Such distinction is important given that “environmental concerns” is a common

justification behind the use of IPs (Evenett et al., 2024). To identify green products, we compile a list

of HS 6-digit products from six different sources. These sources cover products at different stages of

production, from raw materials to intermediate inputs to final products that are critical for the green

8Specifically, we use a RCA measure that accounts for both exports and imports, such that RCA =( Xcpt∑
p Xcpt∑
c Xcpt∑

c
∑

p Xcpt

)
/
( Mcpt∑

p Mcpt∑
c Mcpt∑

c
∑

p Mcpt

)
, where X represents exports and M represents imports.

9See Evenett et al. (2024) (pp. 10-11) for definitions of each category.

7



transition. The final list of green products contains 869 products.

IMF Climate Change Dashboard - Low Carbon Technologies (LCT). The LCT designation

is based on Pigato et al. (2020). LCT products are defined based on their contribution to reducing car-

bon emissions, enhancing energy efficiency, and supporting renewable energy production and use. Some

examples include: products that are directly used in the generation of energy from renewable sources

(e.g., solar panels, wind turbines); products that improve energy efficiency (e.g., energy-efficient lighting,

HVAC systems, and insulation materials that reduce energy consumption and carbon emissions); prod-

ucts that reduce emissions directly (filters and scrubbers used in industrial processes) or indirectly by

contributing to more efficient processes and use of resources; infrastructure/components that are essential

for the deployment of renewable energy and energy efficiency technologies (parts of wind turbines or solar

panel mounting systems); and products that contribute to sustainable environmental management and

pollution control, which support broader environmental objectives.

IMF Climate Dashboard - Environmental Goods. Environmental goods include two types of

goods: connected goods (goods that are connected to environmental protection) and adapted goods

(goods that have been adapted to be more environmentally friendly or “cleaner”). Connected goods

are goods whose use directly serves environmental protection purposes. Examples include septic tanks,

catalytic converters for vehicles, trash bags, bins, rubbish containers. Adapted goods are those whose use

is beneficial for environmental protection. Examples include biofuels, mercury-free batteries, and hybrid

and electric cars.

The starting point of the classification of environmental goods is a list identified in OECD/Eurostat

(1999). Over time, due to environmental, social, and technological advances, 108 product codes were

added, mainly in adapted goods. These additions were made in part by consulting the Amendments to

the HS Nomenclature, published every 5 years by the World Customs Organization. Examples include

electric and hybrid vehicles and other cars, biodiesel, and rechargeable batteries. However, the resulting

list does not necessarily cover all environmental goods. Some environmental goods have no equivalent HS

commodity codes (e.g., Chlorofluorocarbon (CFC)-free products). On the other hand, some HS commod-

ity codes include goods which may not be environmental goods (e.g., the code for wind turbines includes

other engines unrelated to wind power). Appendix B compares IMF’s Environmental Goods and LCT

products.

Rosenow and Mealy (2024). The authors compile a list of HS 6-digit products involved in three

green value chains: solar photo-voltaic (PV), wind turbines and electric vehicles (EVs). This list is based

on the assessment of industry experts. Moreover, these HS products are classified in four categories,

characterized by their position in the value chain: raw materials, processed materials, sub-components,
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and end products. In Section 4.3.1, we use this information to provide evidence for IP’s role on industrial

upgrading along the green value chain.

Kowalski and Legendre (2023). Critical raw materials are defined as those used intensely in green

transition technologies such as li-ion batteries, fuels cells, wind energy, electric traction motors and photo-

voltaics. This classification is taken from Bobba et al. (2020). Table 2.1 (p. 12) of Kowalski and Legendre

(2023) summarize the critical raw materials and the respective technologies in which they contribute to

the green transition. Figure 2.1 (p. 13) of the paper lists “green raw materials” based on the OECD

Inventory of Export Restrictions on Industrial Raw Materials. Annex B of the paper details the products

in the Inventory at HS2007 code.

Goldschlag et al. (2020). The authors construct a link between CPC patent classification and HS

product codes using machine learning. They proceed in three steps. First, for each HS product descrip-

tion, the authors generate a set of keywords to be used as search terms. Second, they data mine the

title and abstracts of all patents, matching them to HS products with corresponding keywords. Third,

they generate weights that represent how frequently each HS product’s keywords appear in each patent

classification. For example, HS code 842121 “Machine for filtering or purifying water” has a weight of 95.8

percent on CPC code Y02 “Technologies or Applications for Mitigation or Adaptation against Climate

Change” and 4.2 percent on CPC code E03 “Water Supply: Sewerage”. We classify green patent codes

as all those with CPC code of Y02, following Hasna et al. (2023). Lastly, we define HS codes to be green

if they have a weight greater than 50 percent on Y02.

Mealy and Teytelboym (2022). We replicate the dataset of Mealy and Teytelboym (2022) by gather-

ing data from multiple sources: the WTO core list, the APEC list of environmental goods, and OECD’s

illustrative product list of environmental goods and customized products lists. Each product classified as

green has been either endorsed by large number of WTO/APEC member countries, or its environmental

benefits have been determined by OECD countries. This represents a range of environmental categories

such as air pollution, wastewater management and recycling.

2.2 Descriptive Statistics

We provide descriptive statistics of protectionist IPs by stated motive, country income group, policy

instrument, and GTA evaluation. For the rest of the paper, we use the term IP for short to refer to

protectionist IP, unless when explicitly comparing IPs by GTA evaluation.
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2.2.1 Evolution of IP Announcements over Time

Figure 1 plots the evolution of announced IP counts by stated motive during 2009-2022. There is a clear

surge in announced IPs since 2017. The number of announced IPs increases by eight times between 2017

and 2022. We are able to assign approximately 60% of IPs to at least one stated motive.10 For those

with non-missing IP motive, about 13% have more than one motive. These IPs with multiple motives are

counted as many times as the number of associated motives. Amongst IPs with stated motive(s), during

the last five years of the sample (2018-2022), approximately half of the IPs are motivated by strategic

competitiveness reasons, followed by climate mitigation (34%) and global value chain (GVC) resilience

(16%). IPs that seek to deal with geopolitical concerns or national security are very uncommon (1%).

In Figure 2, we split the analysis of IP counts by stated motive into advanced economies (AEs) and

emerging economies (EMs).11 The classification by country income group (AE/EM) is based on the

IMF’s World Economic Outlook. We make four observations. First, both AEs and EMDEs have actively

implemented IPs. The pervasive use of IPs predates the period of analysis, particularly in some large

EMDEs with well-recognized data limitations on subsidies and other state interventions and systemati-

cally less transparent and granular policy disclosure and reporting standards (see section 2.1.1). However,

in recent years, the number of IPs introduced by AEs rose substantially—from around 100 in 2017 to over

1000 in 2022. There was also a continued rise in IPs among EMDEs, adding 350 interventions between

2017 and 2022. Consequently, the share of recently implemented active IPs by AEs rose since 2017.

Second, IP motives are more diverse in AEs than EMs. While AEs pursue IPs for climate mitigation,

strategic competitiveness, and more recently GVC resilience, strategic competitiveness by far outweighs

all other stated motives in EMs - representing 70% of all IPs with an assigned motive. Third, consistent

with the patterns in Figure 1, there is a very low share of IPs with explicitly stated geopolitical/national

security concerns in both AEs and EMs. Fourth, EMs, and even more so AEs, have seen an uptick in

IPs for GVC resilience purpose since 2020, possibly motivated by heightened geopolitical tensions and

supply chain disruptions during COVID-19.

Appendices D.1 and D.2 document the evolution of IPs over time for the global aggregate and by country

income group. The surge of IPs since 2017 is clear. Before 2017, IPs accounted on average for less than 25

percent of the total count of policies in GTA. This number rose to over 35 percent during the 2017-2022

period.

10Figure 1 indicates around 50% of IPs without assigned stated motive, because we are double-counting on IPs with

multiple stated motives. Therefore, the denominator of the fraction is higher.
11We leave out low-income countries (LICs) in Figure 2, because they only account for a very small fraction (1%) of all

announced IPs (see Appendix D.2). However, LICs are included in the sample in the empirical analysis.
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Figure 1: Evolution of Announced IP Counts by Stated Motive

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: y-axis represents the counts of announced IP over time, adjusted for reporting lags. An announced IP with n stated

motives is counted n times.

(a) Advanced Economies (AEs) (b) Emerging Economies (EMs)

Figure 2: Evolution of Announced IP Counts by Stated Motive, AE vs. EM

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: y-axis represents the counts of announced IP for AE vs. EM over time, adjusted for reporting lags. An announced

IP with n stated motives is counted n times. Panel (a) uses the sample of advanced economies (AEs). Panel (b) uses the

sample of emerging economies (EMs). The classification of country income group (AE/EM) is based on the IMF’s World

Economic Outlook.

2.2.2 Breakdown by Policy Instrument

GTA assigns each policy to one of 66 policy instruments. To facilitate the empirical analysis later on,

we follow Goldberg et al. (2024) and Evenett et al. (2024) by classifying the more disaggregated policy

instruments into eight broad groups according to the UN MAST (Multi-Agency Support Team) Chapter

classification for non-tariff measures. These eight groups are: export barriers, import barriers, domestic

subsidies, export incentives, FDI measures, public procurement measures, local content measures, and

others. Appendix C provides more details on the composition of the eight broad policy instrument groups.
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One interesting observation is that close to 80% of domestic subsidies take the form of financial-related

measures, such as state loan, financial grant, and loan guarantee. This is in contrast with the textbook

formulation of domestic subsidies, which are typically modeled as a production subsidy (Lashkaripour

and Lugovskyy, 2023), a specific type that in the data only accounts for 2.24% of domestic subsidies

IPs. Similarly, approximately 90% of export incentives IPs are financial-related measures, such as trade

finance and financial assistance in foreign market.

Figure 3 shows the share of the eight policy instruments out of total IPs by AEs and EMs in 2018-

2022. Panel (a) counts each policy once, even if the policy targets multiple HS products. Panel (b)

counts each policy as many times as the number of targeted HS products. First, domestic subsidies and

export incentives are the most commonly used policy instruments in both AEs and EMs. Second, EMs

use a more diverse set of policy instruments. Third, EMs tend to use more trade barriers, whereas AEs

tend to use more local content measures.

The differences between the two panels in Figure 3 are explained by the differences in the average

number of products each policy instrument targets (see Appendix D.3). There are substantial differences

in the average number of targeted products between AEs and EMs. One export incentive in EMs targets

on average almost 400 products, the highest number across all policy instruments and country income

groups. For AEs, one local content measure is the policy instrument with the highest average number of

targeted products: close to 200. These patterns are clearly reflected in the differences between the two

panels in Figure 3.

(a) Policy Level (b) Policy × HS product Level

Figure 3: Breakdown by Policy Instrument (2018-2022), AE vs. EM

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: y-axis represents the share of policy instrument (x-axis) out of total IPs in 2018-2022, adjusted for reporting lags.

Panel (a) counts each policy once, even if the policy targets multiple HS products. Panel (b) counts each policy n times if

it targets n HS products. The classification of country income group (AE - blue bars/EM - orange bars) is based on the

IMF’s World Economic Outlook. Appendix C provides details on the categorization of policy instruments.
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2.2.3 Breakdown by GTA Evaluation

Figure 4 depicts the share of GTA evaluation (i.e., red - protectionist, amber - ambiguous, green - liber-

alizing) out of total IPs by AEs and EMs in 2018-2022. Similar as Figure 3, Panel (a) counts each policy

once, even if the policy targets multiple HS products. Panel (b) counts each policy as many times as

the number of targeted HS products. The results are highly consistent across the two panels. First, the

majority of IPs are protectionist: almost all IPs in AEs and close to 80% of IPs in EMs are protectionist.

Second, EMs implement a larger share of liberalizing IPs - around 20%, compared to virtually zero in AEs.

Appendix D.4 presents additional facts on the breakdowns of GTA evaluation by policy instrument

and country income group. Two patterns stand out. First, a large share of policies classified as import

barriers and FDI is liberalizing, particularly in EMs. Second, EMs conduct a higher share of liberalizing

domestic subsidies than AEs.

(a) Policy Level (b) Policy × HS product Level

Figure 4: Breakdown by GTA Evaluation (2018-2022), AE vs. EM

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: y-axis represents the share of GTA evaluation (x-axis) out of total IPs in 2018-2022, adjusted for reporting lags.

Panel (a) counts each policy once, even if the policy targets multiple HS products. Panel (b) counts each policy n times if

it targets n HS products. The classification of country income group (AE - blue bars/EM - orange bars) is based on the

IMF’s World Economic Outlook.

3 Empirical Strategy

We now turn to describe the econometric strategy used to assess the relationship between IPs and export

competitiveness. Our main empirical methodology is the LP-DiD, originally proposed by Dube et al.

(2024) and used in Cugat and Manera (2024) and Ahn et al. (2024). The LP-DiD method aims at

dealing with the bias arising when using the standard difference-in-differences with two-way fixed effects

(DiD-TWFE) to estimate dynamic and heterogeneous treatment effects across groups that receive the

treatment at different points in time (“staggered treatment”). For example, previously treated units may
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be experiencing delayed effects from their previous treatment because the effects are dynamic. However,

under the DiD-TWFE, these previously treated units are implicitly used as control groups for the newly

treated units, leading to a biased estimate of the average effect of the control group, and consequently

a biased estimated treatment effect. LP-DiD fits our purpose very well, as country-product pairs could

receive multiple IP treatments at different points in time.

LP-DiD deals with the bias through an appropriate selection of a “clean sample”, which creates compa-

rable treatment and control groups. Such sample is constructed as:

clean sample =

first-time IP Dc,p,t = 1 and Dc,p,t−j = 0, 1 ≤ j ≤ L

clean controls Dc,p,t−j = 0,−H ≤ j ≤ L
(1)

where Dc,p,t is an indicator variable that equals one if the first difference of the number of active IPs

in country c and product p in year t, ∆IPc,p,t = IPc,p,t − IPc,p,t−1, is greater than zero. Note that

IPc,p,t refers to the number of active IPs in a given year, which is a stock variable. Consequently, the

first difference captures the IP “shock” in a given year, which is a flow variable. The treatment unit

is a country-product. H denotes the maximum number of horizons of the local projection. L refers to

stabilization lag, i.e., the number of periods required for the effect of IP to stabilize. The choice of L

faces a bias-variance trade-off and is subject to the decision of the researcher. Intuitively, a smaller L

results in a larger number of IP treatments qualifying as “first-time IP” and included in the clean sample.

However, this comes at a cost of bias, as the clean sample would resemble the OLS sample. By contrast,

a larger L reduces the concern for bias, but leads to a smaller number of observations in the treatment

group. In the paper, we set L = 5 as baseline and experiment with L = 3 for robustness (Appendix F.2).

Specifically, equation (1) implies that the clean treatment group is restricted to first-time IP treatments

up to L preceding periods. Doing so excludes country-product pairs that are treated between t− 1 and

t−L in the control group at time t, where the effects of the treatment are not yet stabilized. Intuitively,

suppose that the effect of IP is positive and increases over time up to L periods. Under traditional

DiD-TWFE, country-product pairs treated between t− 1 and t−L are included in the control group for

the IP treatment at t. As a result, the average effect of the control group is upward biased, which implies

a downward biased estimated effect. Similarly, for the clean treatment group, we only choose “clean

controls”, namely country-product pairs that are never treated between t − L and t + H. Otherwise,

units that are not treated at t may still be treated between periods between t− L and t− 1 or between

t + 1 and t + H, thereby biasing the average effect of the control group due to dynamic effects of the

treatment. In sum, the choice of the clean sample eliminates the inclusion of country-product pairs that

may be experiencing dynamic effects from previous or later treatments, which may confound the control

group during the current treatment period. Since we focus on protectionist IPs (i.e., IPs with red GTA

evaluation), we further restrict the treated units to be those that are only treated by red IPs but not
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treated by green or amber IPs at t. Our final clean sample consists of approximately 30,000 observations

in the treatment group and close to 10 million observations in the control group.

Another advantage of LP-DiD compared to standard DiD-TWFE is the possibility to control for dif-

ferences in observed pre-trends in the dependent variable between the treatment and control groups.

Hence, our baseline specification incorporates two lags of the dependent variable following the rule-of-

thumb of optimal choice of lags proposed by Chudik and Pesaran (2015). We also test the robustness

of our findings with three lags, thereby imposing that the treatment and control groups have the same

RCA up to three periods before the shock.

Our baseline specification estimates the dynamic effect of IP treatment on the trade competitiveness

of country c and product p over horizons h ∈ [0, 4]:

rcac,p,t+h − rcac,p,t−1 =βhTreatedc,p,t +

2∑
l=1

θ2lrcac,p,t−l + θ3∆nonIPc,p,t +

2∑
l=1

θ4l∆nonIPc,p,t−l

+ αc,p + δc,t + ρp,t + εc,p,t

(2)

where rcac,p,t+h = ln(RCAc,p,t+h +10−3). Adding a small constant 10−3 to the RCA allows us to include

country-product pairs with zero RCA (i.e., export value is zero), which are prevalent in the sample.12 As

a result, the estimates capture the total effect of the IP treatment on RCA. We choose the 10−3 as the

baseline because the mean value of RCA is 1.29 in the sample, which is very small. However, we also test

the robustness of the main findings by adding 1 as the small constant instead of 10−3 (Appendix F.5). In

Section 4.1.2, we further decompose the total effect into the extensive margin (i.e., probability to start

exporting conditional on not being an exporter in the previous two years) and the intensive margin (i.e,

yc,p,t+h = ln(RCAc,p,t+h)). Treatedc,p,t is an indicator of whether or not the country-product pair re-

ceives an IP treatment at t. We control for the change in the number of non-IP counts (“non-IP shock”)13

and a set of fixed effects (i.e., country-product αc,p, country-year δc,t, product-year ρp,t). In our baseline

analysis, we control for two lags of ln(RCA+ 10−3) and the non-IP shock. The choice of two lags follows

from the rule-of-thumb proposed by Chudik and Pesaran (2015), who recommend the optimal number of

lags to be T 1/3 = 141/3 ≈ 2.41. We also test the robustness of our findings by controlling for up to three

lags of ln(RCA + 10−3) and the non-IP shock (Appendix F.3).

One important issue we also investigate in this paper is the potential heterogeneous effect of differ-

ent IP instruments in Section 4.1.4. It is possible that each country-product pair is treated by different

12Approximately 42% of observations in the clean sample have zero RCA.
13Non-IPs are GTA policies that are not classified as IPs in Juhász et al. (2023). Hence, non-protectionist IPs (i.e., IPs

without amber or green GTA evaluation) are not non-IPs.
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types of IP instruments in a given year. Therefore, we refine the sample selection criteria to be:

clean sample i =

first-time IP i Di,c,p,t = 1 and D−i,c,p,t = 0 and Dc,p,t−j = 0, 1 ≤ j ≤ L

clean controls Dc,p,t−j = 0,−H ≤ j ≤ L
(3)

where i ∈ [1, 8] refers to one of the eight broad policy instruments we categorize in Section 2.2.2. In

words, the treatment group to examine the effect of IP instrument i is restricted to country-product

pairs that are treated by policy instrument i for the first time (Di,c,p,t = 1) up to L preceding peri-

ods (Dc,p,t−j = 0, 1 ≤ j ≤ L) and not treated by any other policy instruments −i at the same time

(D−i,c,p,t = 0). The control group remains the same as the clean controls in equation (1). Note that our

clean treatment group (“first-time IP”) requires that units should not be treated in any of the periods

preceding L (Dc,p,t−j = 0, 1 ≤ j ≤ L) to avoid confounding dynamic effects from any policy instrument.

Table 1 summarizes the number of treated units in the clean sample for each policy instrument. We

focus on domestic subsidies and export incentives for the empirical analysis in Section 4.1.4, as these two

instruments have the highest number of treated units the in final clean sample.

To explore the heterogeneous effect of different policy instruments in Section 4.1.4, we run a similar

regression as in (2), separately for each policy instrument i given the instrument-specific clean sample

i. The regression specification is similar to the baseline, except that the main independent variable

Treatedc,p,t becomes Treatedi,c,p,t (i.e., treatment dummy if the country-product receives a positive IP

shock under the policy instrument i).

Export barriers Import barriers Domestic subsidies Export incentives Local content

522 5585 14648 7519 1171

Table 1: Number of Clean Treated Units

4 Results

4.1 All Products

4.1.1 Average Effect

We find that, on average, products targeted by IPs experience a 5.6% higher increase in trade competi-

tiveness than non-targeted products three years after the introduction of the IP (Figure 5). This result is

consistent with recent findings that subsidies are associated with increased exports of targeted products

(Rotunno and Ruta, 2024) and is consistent with a frequent motive stated by governments to pursue IPs,

which is to promote strategic competitiveness (Evenett et al., 2024).14

14Strategic competitiveness refers to “the promotion of domestic competitiveness or innovation in a strategic product or

sector” (Evenett et al., 2024). These are policies aimed at enhancing the productivity of a sector that is perceived as being
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Figure 5: Effect of IP on rca, All Products

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: Solid line is the estimated percent change in RCA + 10−3. Dashed lines are 90% confidence intervals. Standard

errors are clustered at the country-product level.

4.1.2 Decomposition: Extensive Margin vs. Intensive Margin

To further explore the link between IPs and competitiveness, we decompose our trade competitiveness

measure into the extensive margin (i.e., the probability to start exporting conditional on not being an

exporter in the previous two years) and the intensive margin (i.e., change in ln(RCA) conditional on

already being an exporter).

Specifically, the extensive margin (i.e., export participation) effect of IP is estimated according to:

Exportc,p,t+h =βhTreatedc,p,t +

2∑
l=1

θ2lExportc,p,t−l + θ3∆nonIPc,p,t +

2∑
l=1

θ4l∆nonIPc,p,t−l

+ αc,p + δc,t + ρp,t + εc,p,t

(4)

where Exportc,p,t+h is an indicator variable that equals to 1 if country c exports a strictly positive value

of product p at time t + h. To capture export participation, we restrict the sample to products that

the country was not exporting in the previous two periods (Exportc,p,t−1 = Exportc,p,t−2 = 0). To

estimate the intensive margin effect, we follow the same specification as in (2) by replacing rcac,p,t+h

with lnRCAc,p,t+h for −2 ≤ h ≤ 4.15

Figure 6 plots the dynamic effects at the extensive margin (Panel (a)) and the intensive margin (Panel

under-performing. Both Evenett et al. (2024) and this paper find that strategic competitiveness is the most frequent IP

motive.
15We put h up to -2 because we control for two lags of lnRCA on the right-hand side.
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(b)). We find that targeted products experience higher probability to start exporting compared to non-

targeted products in the medium run (i.e., three years after the IP treatment). The intensive margin

dynamics, though insignificant, inherits the shape of the average effect plotted in Figure 5. In Sections

4.1.3 and 4.2, we show that this insignificant effect masks significant heterogeneity by product character-

istics, such as the product’s initial competitiveness or importance in the green transition.

(a) Extensive Margin (b) Intensive Margin

Figure 6: Decomposition: Extensive vs. Intensive Margin, All Products

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: Solid line is the estimated percentage points change in the probability to start exporting conditional on not exporting

in the previous two periods (Panel (a)) and percent change in RCA (Panel (b)). Dashed lines are 90% confidence intervals.

Standard errors are clustered at the country-product level.

4.1.3 Heterogeneity by Product Characteristic: The Role of Initial Competitiveness

Next, we test whether the relationship between IPs and RCA dynamics varies depending on the targeted

product’s initial competitiveness.

To gauge how the relationship between IPs and RCA varies with the product’s initial competitiveness,

we run the following regression:

rcac,p,t+h − rcac,p,t−1 =βhTreatedc,p,t + γhTreatedc,p,t × (RCAc,p,t−1 > 1) +

2∑
l=1

θ2lrcac,p,t−l

+ θ3∆nonIPc,p,t + λ3∆nonIPc,p,t × (RCAc,p,t−1 > 1)

+

2∑
l=1

θ4l∆nonIPc,p,t−l +

2∑
l=1

λ4l∆nonIPc,p,t−l × (RCAc,p,t−1 > 1)

+ αc,p + δc,t + ρp,t + εc,p,t

(5)

We report the coefficient estimates from (5) for βh +γh× (RCAc,p,t−1 > 1), which captures the marginal
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effect of IP on RCA. Results in Figure 7 showcase the dynamic effects of IPs by initial RCA. Previously

competitive products (red line) experience a large short-term boost in competitiveness after the IP shock.

This positive association peaks after two years, but then declines and becomes statistically insignificant

in four years, though the estimated magnitude remains as high as 9 percent. Patterns are reversed for

non-competitive products (blue line). RCA initially declines and then increases gradually, albeit non-

significantly over the horizon considered.

These results could reflect that initially uncompetitive products face short-term adjustment costs to

become globally competitive. Therefore, for IPs to be associated with improvements in RCA in products

that are initially non-competitive, the country may need a set of fundamentals in place (e.g., high levels

of human capital). These findings may rationalize why countries often target products with high compar-

ative advantage (Juhász et al., 2023), as such strategy may yield more immediate results and entail lower

risk of failures (Reed, 2024). From a welfare point of view, targeting products where there is evidence

of distortions and that are not too far from the global frontier may be desirable, as such IPs require

small policy nudges that can limit adverse spillovers on other potentially competitive sectors or products.

Alternatively, targeting low initial RCA products may be justified if there are potential dynamic gains

from supporting newer products/sectors, especially products with high potential for further innovation

and productivity growth. As we show in Section 4.2, green products are examples of such.

Figure 7: Effect of IP on rca, by Initial RCA

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: Solid line is the estimated percent change in RCA + 10−3. Dashed lines are 90% confidence intervals. Red

lines correspond to products with RCAc,p,t−1 > 1 (initially competitive) and blue lines correspond to products with

RCAc,p,t−1 ≤ 1 (initially uncompetitive). Standard errors are clustered at the country-product level.
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4.1.4 Heterogeneity by Policy Instrument

Next we turn to studying how RCA dynamics relate to different IP instruments. In the main text we

focus on the empirical analysis of domestic subsidies and export incentives, as these two instruments have

the highest number of treated units in the final clean sample: 14658 treated units for domestic subsidies

and 7519 for export incentives. Results on other policy instruments are in Appendix E.1.

Figure 8 shows that the relationship between IPs and competitiveness varies across policy instruments.

Domestic subsidies are associated with a short-term 5 percent increase in competitiveness for targeted

relative to non-targeted products, which fades over time (Panel (a)). By contrast, export incentives

yield an initial 1 percent decline in competitiveness, followed by longer-term improvements (Panel (b)).

Thus, results point to a potential trade-off between short- and long-run benefits across instruments. The

short-term boost in competitiveness from domestic subsidies may be appealing to policymakers with a

short-term horizon. However, our evidence suggests that IPs focused on boosting exports may provide

more sustained benefits. Indeed, the successful experience of export promotion strategies in East Asia

underscores the importance of foreign orientation (Cherif and Hasanov, 2019) and competition (Aghion

et al., 2016) in the design of effective IPs. Export incentives encourage firms to improve performance to

compete in the global market, a strategy that could bear fruits in the medium- to long-term (e.g., Choi

and Levchenko (2024) on Korea). However, the full welfare assessment of different policy instruments

requires gauging their potential cross-sector, cross-country effects, which is beyond the scope of this pa-

per. In fact, export incentives, most of which are prohibited under WTO rules, may spark retaliatory

measures by other countries, which may undermine their benefits.

Appendix E.2 presents results for initially competitive vs. initially uncompetitive products by policy

instrument. The results by policy instrument are similar to the ones for overall IPs, discussed in Section

4.1.3: we find a positive association for initially competitive products in the short run and for initially

uncompetitive products in the longer horizon.

4.2 Green vs. Non-Green Products

One key distinction between the current IP wave compared to the wave before the 1990s is the growing

share of green IPs. Motivated by this observation, we compare the relationship between IPs and RCA for

green versus non-green products. Green products are defined as 6-digit HS92 products that are critical

to the green transition. Section 2.1.4 provides a detailed description of the green products list.

Intuitively, there are two particular justifications for IPs targeting green products: (i) the novelty of

green technologies, and (ii) emission externalities. Low carbon technologies (LCTs) are new technologies

that compete with established ones. Successfully establishing LCTs requires a transition away from old
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(a) Domestic Subsidies (b) Export Incentives

Figure 8: Effect of IP on rca, by Policy Instrument

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: Solid line is the estimated percent change in RCA+ 10−3 for domestic subsidies (Panel (a)) and export incentives

(Panel (b)). Dashed lines are 90% confidence intervals. Standard errors are clustered at the country-product level.

technologies. Such transition is challenging because it requires upfront fixed costs and coordination by

multiple agents, including consumers, producers, and public sector. For example, the introduction of

electric vehicles requires the coordination of many agents, and producers need clear signals about the

direction of the industry. IPs could help coordinate actions to accelerate such a transition (Aghion et al.,

2016). Second, emission externality implies that LCTs’ private benefits are lower than social benefits, so

the provision of LCTs is lower than socially optimal. IPs can help address such under-provision, especially

when other policy instruments, such as carbon pricing, are initially politically difficult to put in place.

Figure 9 shows that IPs targeting green products increase RCA by about 20 percent after 4 years (green

line). By contrast, IPs targeting non-green products are associated with only a mild short-term increase

in RCA, with smaller and insignificant effects in the medium term. Therefore, evidence suggests that IPs

targeting green products have a more prominent impact on competitiveness in the longer horizon than

those that target non-green products.

We further examine the role of initial competitiveness separately for green and non-green products. Fig-

ure 10 presents the results. Our previous findings on initial competitiveness in Section 4.1.3 are mainly

driven by non-green products. In contrast, IPs are positively associated with long-run gains in RCA for

green products that have not yet established comparative advantage in the global market. These findings

underscore the distinct nature of IPs when targeting green products.

Finally, we investigate policy instrument heterogeneity by distinguishing between green and non-green
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products. The association between IP and RCA is generally more positive while targeting green products

for both domestic subsidies and export incentives, particularly in the longer horizon. Figure 11 shows that

the association between domestic subsidies and the RCA of green products is insignificant in the short

term and positive in the medium term. By contrast, domestic subsidies are linked to a small temporary

improvement in the RCA of non-green products, which turns negative in the medium-term. This mimics

the patterns found in Figure 8 for the average product, which is likely non-green. For export incentives,

while both green and non-green products experience boosts in competitiveness after the IP treatment,

the effect for green products is more significant and pronounced.

Figure 9: Effect of IP on rca, Green vs. Non-Green Products

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: Solid line is the estimated percent change in RCA + 10−3. Dashed lines are 90% confidence intervals. Red lines

correspond to non-green products and green lines correspond to green products. Standard errors are clustered at the

country-product level. The list of green products is described in Section 2.1.4.

4.3 Additional Results and Robustness

4.3.1 Cross-Product Spillover along The Green Value Chain

Motivated by the positive long-run association between IPs and the RCA of green products, we further

examine the potential cross-product spillover along the the green value chain. Moreover, this exercise

allows us to study potential spillover effects of IP on products that are not directly targeted by the policy.

The key challenge is data availability: the green value chain is highly specialized, niche, and requires high

level of granularity. To this end, we use the dataset from Rosenow and Mealy (2024), who compile a

22



(a) Non-Green Products (b) Green Products

Figure 10: Green vs. Non-Green Products: The Role of Initial RCA

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: Panel (a) restricts the sample to non-green products. Panel (b) restricts the sample to green products. Solid

line is the estimated percent change in RCA + 10−3. Dashed lines are 90% confidence intervals. Red lines correspond to

products with RCAc,p,t−1 > 1 (initially competitive) and blue lines correspond to products with RCAc,p,t−1 ≤ 1 (initially

uncompetitive). Standard errors are clustered at the country-product level.

(a) Domestic Subsidies (b) Export Incentives

Figure 11: Domestic Subsidies vs. Export Incentives: The Role of Green Products

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: Solid line is the estimated percent change in RCA+ 10−3 for domestic subsidies (Panel (a)) and export incentives

(Panel (b)). The red lines are non-green products, the green lines are green products. Dashed lines are 90% confidence

intervals. Standard errors are clustered at the country-product level.

product mapping at the 6-digit HS code to three major green value chains: wind turbines, solar panels,

and electric vehicles. Products involved in these three value chains are assigned to one of the four value

chain stages: raw materials (e.g., iron ore, nickel ore), processed materials (e.g., nickel waste or scrap),
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subcomponents (e.g., seats, nickel-iron electric accumulators), end products (e.g., lead-acid electric ac-

cumulators (vehicle), buses except diesel powered). Moreover, no product is assigned to more than one

green value chain.

We estimate the following local projection framework:

rcac,p,t+h =βd∆DownIPc,v(p),s(p),t +

2∑
l=1

θ1l∆DownIPc,v(p),s(p),t−l

+ βu∆UpIPc,v(p),s(p),t +

2∑
l=1

θ2l∆UpIPc,v(p),s(p),t−l

+

2∑
l=1

θ3lrcac,p,t−l

+ θ4∆NonIPc,v(p),s(p),t +

2∑
l=1

θ5l∆NonIPc,v(p),s(p),t−l

+ FEs + εc,p,t

(6)

∆DownIPc,v(p),s(p),t is the first difference of active downstream IPs for the value chain of product p

(denoted by v(p)) relative to the value chain stage of product p (denoted by s(p)). This variable captures

the shock to downstream IPs for the product. Similarly, ∆UpIPc,v(p),s(p),t represents the upstream IP

shock. Additional controls include non-IP shock (∆NonIPc,v(p),s(p),t), their two lags, as well as two lags

of the dependent variable. FEs refers to a comprehensive set of fixed effects: country-product, product-

year, and country-value chain-year. The outcomes of interest are βd and βu, which capture the effect of

downstream (upstream) IPs relative to IPs targeting products within the same stage of the value chain.16

Figure 12 reports the estimated effect for IPs targeting more upstream products and more downstream

products in the three major green value chains.17 IPs targeting more upstream products are associ-

ated with stronger improvements in RCA relative to those targeting products at the same stage of the

value chain, while IPs targeting more downstream products have similar effects as IPs targeting prod-

ucts within the same value chain stage. Intuitively, upstream IPs may alleviate capacity constraints and

benefit downstream products through reductions in input costs. This finding is consistent with empirical

evidence considering generic IO production networks, such as Lane (Forthcoming) for the case of Korea,

as well as firm-level evidence in Baquie et al. (2025) for 42 countries from Orbis.

16Note that these estimated effects are relative to the effects of IPs targeting products within the same value chain

stage (∆OwnIPc,v(p),s(p),t), because ∆DownIPc,v(p),s(p),t +∆UpIPc,v(p),s(p),t +∆OwnIPc,v(p),s(p),t = ∆IPc,v(p),t and

∆IPc,v(p),t is absorbed by the country-value chain-year fixed effect. Therefore, including all of ∆DownIPc,v(p),s(p),t,

∆UpIPc,v(p),s(p),t, OwnIPc,v(p),s(p),t and country-value chain-year fixed effect results in the issue of multi-collinearity.
17Note that the composition of instruments varies across different stages of the value chain. While domestic subsidies

account for the majority of IPs in all stages of production, they are more prevalent in the initial stages of the value chain

(raw materials (over 70%), compared to more downstream stages (between 40 and 60%)). This means that some of the

differences in impact may be in part attributable to composition effects.
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(a) Upstream IP (b) Downstream IP

Figure 12: Relative Effect of Upstream/Downstream IPs along the Green Value Chain

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: Solid line is the estimated percent change in RCA+10−3 for upstream IPs (Panel (a)) and downstream IPs (Panel

(b)) relative to the estimated percent change in RCA + 10−3 for IPs targeting products at the same value chain stage.

Dashed lines are 90% confidence intervals. Standard errors are clustered at the country-product level.

4.3.2 Robustness

We perform robust checks of the empirical findings under seven alternative scenarios. First, we drop

China from our main sample. For reasons outlined in Section 2.1.1, IPs in China are not well represented

by the GTA. We show that our empirical results are robust to the exclusion of the particular subset of

IPs in China. Second, we change the number of stabilization lags from 5 years to 3 years to construct

the clean sample. As elaborated in Section 3, the choice of L faces a bias-variance trade-off. A smaller

L results in a larger number of IP treatments qualifying as “first-time IP” and included in the clean

sample. However, this comes at a cost of bias, as the clean sample would resemble the OLS sample.

Third, we additionally control for the third lag of ln(RCA + 10−3) and the non-IP shock. Fourth, we

use an alternative RCA measure which also accounts for imports. Fifth, we use ln(RCA + 1) in place

of ln(RCA + 10−3) as our main dependent variable. Sixth, we exclude units that are treated in 2020

due to the concern that IPs announced during 2020 are intended to address Covid-specific problems.

Finally, we conduct our analysis using all subsidies in the GTA database to assuage concerns related to

the classification of IPs. Appendix F contains all the results. Generally speaking, the results are robust

to the main findings. The only exception is export incentives, for which the medium-term positive effect

is less pronounced in certain exercises. This may be due to the relatively low number of export incentives

IPs in the data.
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5 Conclusion

Industrial policies are back, raising the stakes for analyses assessing their economic implications. The

most commonly stated motive of IPs is to gain competitiveness. Against this backdrop, this paper

empirically evaluates the extent to which products targeted by IPs achieve improvements in trade com-

petitiveness using a large dataset covering 156 countries and 5018 products in 2009-2022. Our results

point to a nuanced picture. On average, this paper documents a positive link between IPs and im-

provements in the competitiveness of targeted products, but effects are heterogeneous across products

and policy instruments. At the product level, our analysis suggests that the positive link between IPs

and a product’s RCA is mostly driven by products that were previously competitive. Other product

characteristics, such as whether the product is related to the green transition, affect the timing of the

effects. For example, green products experience larger medium-term improvements in RCA following the

introduction of IPs compared to non-green products. The timing of effects is also affected by the choice

of instruments. Domestic subsidies are associated with short-term improvements in the competitiveness

of targeted products, while export incentives are associated with medium-term improvements. We also

find suggestive evidence that IPs can affect the performance of other products along the value chain,

pointing to cross-product spillovers.

Hence, IPs should be handled with care. The nuanced effects points to limited use case. Furthermore,

our analysis provides a partial picture of the potential implications of IPs, as it does not fully account

for general equilibrium effects, such as potential cross-sectoral reallocations, the retaliatory measures by

other countries, and fiscal costs. Thus, countries must carefully weigh the costs and benefits of IPs in

general equilibrium, ensure the consistency of IPs with international rules, and prioritize multilateral

policy cooperation. Moreover, IPs can entail significant fiscal costs, amplifying debt sustainability con-

cerns. Incorporating the general equilibrium channels in the analysis of IPs is a fruitful avenue for future

research.
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Online Appendix

A Classifying IP Motives: An LLM Ensemble Approach

This section describes the large language model (LLM) approach used in Evennett et al. (Forthcoming),

which we leverage to assign a stated motive to the IPs in Juhász et al. (2023). Policy descriptions from

the Global Trade Alert (GTA) and New Industrial Policy Observatory (NIPO) contain rich informa-

tion about the intentions behind policy actions. However, accurately attributing these motives is no

trivial task. While traditional Natural Language Processing techniques such as bag-of-words have seen

many successful applications in economics, recent advances in Large Language Models (LLMs) brought

unprecedented possibilities to make such classifications with greater flexibility and accuracy. For exam-

ple, a green industrial policy that subsidizes coal production conditional on meeting high environmental

standards would likely be missed by traditional bag-of-words approaches, as the term ”coal” typically

carries a strong signal for non-green policies on its own. In contrast, LLMs excel at natural language

understanding beyond mere word frequencies, offering contextual comprehension of policy texts.

However, while unsupervised training (pre-training) on vast corpora of text endows LLMs with im-

pressive general language processing capabilities, they are not inherently experts on industrial policies.

To address this, we adopt the pretrain-finetune paradigm to fully leverage the power of LLMs for our

specific classification task. To be clear, all GTA policies include text descriptions, but only a subset of

those in NIPO contain human annotations regarding their motives. This annotated subset forms our

training and validation dataset. We choose RoBERTa-Large as our base model, as it is widely regarded

as the go-to model for such classification tasks. Introduced by Liu et al. (2019) at Meta AI, RoBERTa

(Robustly Optimized BERT Approach) is an improved and more thoroughly trained version of BERT

(Bidirectional Encoder Representations from Transformers), which was the original groundbreaking Lan-

guage Model Liu et al. (2019). We follow best practices outlined in Sun et al. (2020); Mosbach et al.

(2021) for fine-tuning.

Last but not the least, as recent work such as McCoy et al. (2020) has pointed out, LLM performance

can be unstable due to randomization during training. To address this issue, we employ an ensemble

approach: we train RoBERTa-Large ten times, each time with a randomly initialized classification head

and a randomized batch order during training, and calculate the average probability to determine the

final classification. This process is designed to enhance the robustness of our predictions. Below are

details about our algorithm.
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A.1 Algorithm in Detail

Step 0 - Model Construction. For each motive, we finetune RoBERTa-Large by augmenting it with a

custom classification head. RoBERTa-Large generates 1,024-dimensional vector representations for each

input token. We use the 1,024-dimensional hidden state corresponding to the [CLS] token as input to

our classification head. The classification head consists of a fully connected layer (1,024 × 1,024), a ReLU

activation function, a dropout layer (dropout rate: 0.1), and a final classification layer (1,024 × 2). A

softmax function is applied at the output to generate probability distributions over the target classes.

With 355 million parameters, RoBERTa-Large remains manageable on a single RTX 8000 GPU. As a

result, we perform full finetuning, allowing all model weights—including both RoBERTa’s pre-trained

weights and the classification head’s weights—to be updated during training.

Step 1 - Text Preprocessing. While LLMs require significantly less preprocessing than traditional

NLP workflows, some basic cleaning steps are necessary to enhance their performance. We remove

all non-Unicode characters and redundant escape sequences and replace non-English characters with

their English counterparts whenever possible. These preprocessing steps are important because, without

them, LLMs may cluster unrecognized characters into the [UNK] token during tokenization, reducing the

information-to-signal ratio in the processed text. Additionally, we truncate input text at 512 tokens, as

this is the maximum context length for RoBERTa-Large. As shown in Figure B.1, the vast majority of

policy texts fall below this threshold, resulting in minimal information loss. After cleaning and trunca-

Figure B.1: Histogram of Policy Description Length

tion, we randomly split our labeled dataset into training and testing sets. We use a class-stratified 80%

sample for training and reserve the remaining 20% for testing. This train/test split is performed once and

remains fixed throughout our ensemble process. The test dataset is withheld until the entire algorithm

is complete, at which point we evaluate its performance.
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Step 2 - Finetuning Finetuning is a supervised learning technique that adjusts an LLM’s responses to

specialize it for a specific task. Mathematically, this involves updating the neural network’s weights—the

parameters that transform input text into outputs through various layers of the model. The goal of

fine-tuning is to optimize these weights to minimize the loss function for the target dataset. Since our

task is classification, we use cross-entropy loss, which is defined as:

L = −
N∑
i=1

wi · yi log(ŷi)

where yi is the true label, ŷi is the predicted probability for class i, wi is the class weight, and N is the

number of classes. To account for label imbalance, we incorporate class weights wi, ensuring that the

model does not overly favor majority classes. To improve generalization and stability, we follow the best

practices from Mosbach et al. (2021), deliberately training with a combination of a small learning rate

with bias correction and a large number of iterations. We use the AdamW optimizer with a learning rate

of 1 × 10−5 and train the model for 8 epochs. We apply a weight decay of 0.01 and use a linear learning

rate scheduler with warm-up, setting the warm-up proportion to 10% of the total training steps.

Since the model’s results can vary depending on various factors even with the same inputs, this step

is repeated ten times to improve the accuracy of the model’s predictions, which produces ten finetuned

models for each stated motive.

Step 3 - Ensemble and Production We apply our algorithm on all IPs from Juhász et al. (2023).

To recap, for each policy, we feed policy title and description to each of the ten finetuned models, and

then obtain final prediction which yields ten sets of probabilities for policies corresponding to each stated

motive. We then compute the weighted average of the probabilities and classify the policy as having the

stated motive if the weighted probability exceeded 60%.

A.2 Validation

To assess the effectiveness of our ensemble model, we compare its performance against several alternative

approaches commonly used in text classification:

Term Frequency-Inverse Document Frequency (TF-IDF). TF-IDF is a traditional Bag-of-Words

method for text representation that assigns weights to words based on their importance in a document

relative to a corpus. We use TF-IDF features as inputs to a logistic regression classifier.

In-Context Learning. Large language models (LLMs) can perform classification tasks without fine-

tuning by leveraging a few labeled examples in their prompt (few-shot learning). Given a small set of

demonstration examples, the LLM generates predictions based on its pre-trained knowledge. We evaluate
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three different models for in-context learning: Llama3-8b-instruct (Llama Team, 2024), Qwen2-8b-

instruct (Yang et al., 2024), and GPT-3.5 Turbo by OpenAI. These models were selected based on

their strong performance, accessibility, and relative computational efficiency.

Finetuning Instruction-Following LLMs. In addition to finetuning RoBERTa-Large, we finetune

instruction-following models using Low-Rank Adaptation (LoRA) (Hu et al., 2021). LoRA is a parameter-

efficient finetuning technique that reduces the computational cost of adapting large language models while

maintaining their expressive capacity. Instead of updating all model weights, LoRA introduces small low-

rank matrices that are trained alongside the frozen original model weights, significantly reducing memory

and computational requirements.

For both in-context learning and finetuning, we structure our prompts as follows:

Classify the following policy as Green Industrial Policy or not. Green industrial policies are

policies that are aimed to or likely to provide climate change mitigation or facilitate the

transition to a low-carbon economy. You are only allowed to choose one of the following

categories: True, False.

{DEMONSTRATION POLICY 1} {DEMONSTRATION LABEL 1}

{DEMONSTRATION POLICY 2} {DEMONSTRATION LABEL 2}

{DEMONSTRATION POLICY 3} {DEMONSTRATION LABEL 3}

...

{INPUT POLICY}

where {DEMONSTRATION POLICY i}, {DEMONSTRATION LABEL i} are replaced with three

randomly chosen examples from the training dataset, and {INPUT POLICY} is replaced with the policy

text to classify.

Evaluation Metrics To compare performance across methods, we use two standard metrics: accu-

racy and macro-F1 score. Accuracy measures the proportion of correctly classified instances out of

the total number of instances. It is formally defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

where:

• TP (True Positives): correctly classified positive instances

• TN (True Negatives): correctly classified negative instances

• FP (False Positives): incorrectly classified negative instances as positive
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• FN (False Negatives): incorrectly classified positive instances as negative

While accuracy is an intuitive measure, it can be misleading in imbalanced datasets, where a model

predicting only the majority class would still achieve high accuracy.

F1 Score is the harmonic mean of precision and recall, balancing the tradeoff between them:

F1 = 2 × Precision × Recall

Precision + Recall
(8)

where:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(9)

Precision measures how many of the predicted positive instances are actually positive, while recall mea-

sures how many actual positive instances were correctly identified. For our binary classification tasks, we

use the macro-F1 score, which averages the F1 scores across both classes:

Macro-F1 =
1

2
(F1positive class + F1negative class) (10)

Unlike accuracy, the macro-F1 score gives equal weight to both classes, making it a more reliable measure

when dealing with class imbalances. Table B.1 presents the accuracy and macro-F1 scores for different

methods applied to the classification of climate change mitigation motives.

Table B.1: Performance Comparison of Different Approaches on Motive: Climate Change Mitigation

Approach Accuracy Macro-F1

Bag-of-Words

TF-IDF+logistic 0.88 0.81

In-Context Learning (Fewshot)

Llama3-8b-instruct 0.87 0.75

Qwen2-8b-instruct 0.88 0.82

GPT-3.5 Turbo 0.87 0.81

Finetuning

Llama3-8b-instruct 0.91 0.85

Qwen2-8b-instruct 0.88 0.80

GPT-3.5-Turbo 0.94 0.90

RoBERTa-Large 0.94 0.90

Ensemble RoBERTa-Large 0.97 0.94

As shown in Table B.1, our LLM ensemble approach achieves the highest accuracy and macro-F1 score,

outperforming both traditional Bag-of-Words methods and finetuning approaches. While finetuned mod-
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els, particularly GPT-3.5-Turbo, show significant performance gains over in-context learning, our en-

semble method further improves classification performance. Notably, despite the higher computational

cost associated with finetuning instruction-following LLMs, our ensemble approach demonstrates supe-

rior effectiveness, suggesting that combining multiple finetuned models can enhance performance and

generalization.

Table B.2: Performance of Our LLM Ensemble Approach on Other Motives

Motive Accuracy Macro-F1

Strategic Competitiveness 0.92 0.90

Geopolitical Concerns 0.95 0.88

GVC Resillence 0.96 0.90
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B Comparing IMF’s Environmental Goods and LCT Products

Figure B.2: Environmental Goods vs. LCT Products
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C Classification of Policy Instruments

(a) Export Barriers (b) Import Barriers

(c) Domestic Subsidies (d) Export Incentives

38



(a) FDI Measures (b) Public Procurement Measures

(c) Local Content Measures (d) Others

Figure B.2: Composition of Broad Policy Instruments (2018-2022)

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: y-axis represents the share of disaggregated policy instrument out of each broad group in 2018-2022, adjusted for

reporting lags.
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D Additional Descriptive Statistics

D.1 Evolution of Announced IPs over Time

Figure B.3: Evolution of Announced IPs over Time

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: y-axis represents the counts of announced IP over time, adjusted for reporting lags.
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D.2 Evolution of Announced IPs over Time by Country Income Group

Figure B.4: Evolution of Announced IPs over Time: AE vs. EM vs. LIC

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: y-axis represents the counts of announced IP over time, adjusted for reporting lags. The classification of country

income group (AE/EM/LIC) is based on the IMF’s World Economic Outlook.
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D.3 Average Number of Targeted Products by Policy Instrument

Figure B.5: Average Number of Targeted Products by Policy Instrument (2018-2022), AE vs. EM

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: y-axis represents the average number of targeted products by overall and by policy instrument (x-axis) in 2018-2022,

adjusted for reporting lags. The classification of country income group (AE - blue bars/EM - orange bars) is based on the

IMF’s World Economic Outlook.
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D.4 Breakdown by Policy Instrument and GTA Evaluation

Figure B.6: Counts of Announced IPs by Policy Instrument and GTA Evaluation (2018-2022), All Coun-

tries

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: y-axis represents the number of announced IPs by policy instrument (x-axis) in 2018-2022 for all countries, adjusted

for reporting lags. Each bar comprises three colors. Each color represents a GTA evaluation: red (protectionist), orange

(ambiguous), green (liberalizing).

(a) AE (b) EM

Figure B.7: Counts of Announced IPs by Policy Instrument and GTA Evaluation (2018-2022), AE vs.

EM

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: y-axis represents the the number of announced IPs by policy instrument (x-axis) for AE vs. EM in 2018-2022,

adjusted for reporting lags. Panel (a) uses the sample of AEs. Panel (b) uses the sample of EMs. The classification of

country income group (AE/EM) is based on the IMF’s World Economic Outlook. Each bar comprises three colors. Each

color represents a GTA evaluation: red (protectionist), orange (ambiguous), green (liberalizing).
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(a) AE, Policy Level (b) EM, Policy Level

(c) AE, Policy × HS Product Level (d) EM, Policy × HS Product Level

Figure B.8: Breakdown by Policy Instrument and GTA Evaluation (2018-2022), AE vs. EM

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: y-axis represents the share of of the eight policy instruments (x-axis) out of total protectionist (red bars) or

liberalizing (green bars) IPs for AE vs. EM in 2018-2022, adjusted for reporting lags. Panels (a) and (c) use the sample

of AEs. Panels (b) and (d) use the sample of EMs. Panels (a) and (b) count each policy once, even if the policy targets

multiple HS products. Panel (c) and (d) count each policy n times if it targets n HS products. The classification of country

income group (AE/EM) is based on the IMF’s World Economic Outlook.

44



E Additional Results

E.1 Other Policy Instruments

(a) Export barriers

(b) Import barriers

(c) Local content measures

Figure B.9: Effect of IP on ln(RCA + 10−3), Other Policy Instruments

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: Solid line is the estimated percent change in RCA + 10−3 for export barriers (Panel (a)), import barriers (Panel

(b)), and local content measures (Panel (c)). Dashed lines are 90% confidence intervals. Standard errors are clustered at

the country-product level.
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E.2 Domestic Subsidies vs. Export Incentives: The Role of Initial RCA

(a) Domestic Subsidies (b) Export Incentives

Figure B.10: Domestic Subsidies vs. Export Incentives: The Role of Initial RCA

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: Solid line is the estimated percent change in RCA+ 10−3 for domestic subsidies (Panel (a)) and export incentives

(Panel (b)). Red lines correspond to products with RCAc,p,t−1 > 1 (initially competitive) and blue lines correspond to

products with RCAc,p,t−1 ≤ 1 (initially uncompetitive). Dashed lines are 90% confidence intervals. Standard errors are

clustered at the country-product level.
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F Robustness

F.1 Excluding China

Figure B.11: Effect of IP on ln(RCA + 10−3), All Products, No China

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The sample excludes China. Solid line is the estimated percent change in RCA + 10−3. Dashed lines are 90%

confidence intervals. Standard errors are clustered at the country-product level.

Figure B.12: Effect of IP on ln(RCA + 10−3), by Initial RCA, No China

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The sample excludes China. Solid line is the estimated percent change in RCA + 10−3. Dashed lines are 90%

confidence intervals. Red lines correspond to products with RCAc,p,t−1 > 1 (initially competitive) and blue lines correspond

to products with RCAc,p,t−1 ≤ 1 (initially uncompetitive). Standard errors are clustered at the country-product level.

47



Figure B.13: Effect of IP on ln(RCA + 10−3), Green vs. Non-Green Products, No China

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The sample excludes China. Solid line is the estimated percent change in RCA + 10−3. Dashed lines are 90%

confidence intervals. Red lines correspond to non-green products and green lines correspond to green products. Standard

errors are clustered at the country-product level. The list of green products is described in Section 2.1.4.

(a) Domestic Subsidies (b) Export Incentives

Figure B.14: Effect of IP on ln(RCA + 10−3), by Policy Instrument, no China

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The sample excludes China. Solid line is the estimated percent change in RCA+10−3 for domestic subsidies (Panel

(a)) and export incentives (Panel (b)). Dashed lines are 90% confidence intervals. Standard errors are clustered at the

country-product level.
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F.2 Alternative Number of Stabilization Lags (L = 3)

Figure B.15: Effect of IP on ln(RCA + 10−3), All Products, L = 3

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The number of stabilization lag L to construct the clean sample is 3. Solid line is the estimated percent change in

RCA+ 10−3. Dashed lines are 90% confidence intervals. Standard errors are clustered at the country-product level.

Figure B.16: Effect of IP on ln(RCA + 10−3), by Initial RCA, L = 3

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The number of stabilization lag L to construct the clean sample is 3. Solid line is the estimated percent change in

RCA+ 10−3. Dashed lines are 90% confidence intervals. Red lines correspond to products with RCAc,p,t−1 > 1 (initially

competitive) and blue lines correspond to products with RCAc,p,t−1 ≤ 1 (initially uncompetitive). Standard errors are

clustered at the country-product level.
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Figure B.17: Effect of IP on ln(RCA + 10−3), Green vs. Non-Green Products, L = 3

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The number of stabilization lag L to construct the clean sample is 3. Solid line is the estimated percent change

in RCA + 10−3. Dashed lines are 90% confidence intervals. Red lines correspond to non-green products and green lines

correspond to green products. Standard errors are clustered at the country-product level. The list of green products is

described in Section 2.1.4.

(a) Domestic Subsidies (b) Export Incentives

Figure B.18: Effect of IP on ln(RCA + 10−3), by Policy Instrument, L = 3

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The number of stabilization lag L to construct the clean sample is 3. Solid line is the estimated percent change in

RCA+10−3 for domestic subsidies (Panel (a)) and export incentives (Panel (b)). Dashed lines are 90% confidence intervals.

Standard errors are clustered at the country-product level.
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F.3 Controlling for the Third Lag

Figure B.19: Effect of IP on ln(RCA + 10−3), All Products, Control for the Third Lag

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The regressions additionally control for the third lag of ln(RCA+ 10−3) and ∆NonIP . Solid line is the estimated

percent change in RCA + 10−3. Dashed lines are 90% confidence intervals. Standard errors are clustered at the country-

product level.

Figure B.20: Effect of IP on ln(RCA + 10−3), by Initial RCA, Control for the Third Lag

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The regressions additionally control for the third lag of ln(RCA + 10−3) and ∆NonIP . Solid line is the esti-

mated percent change in RCA + 10−3. Dashed lines are 90% confidence intervals. Red lines correspond to products with

RCAc,p,t−1 > 1 (initially competitive) and blue lines correspond to products with RCAc,p,t−1 ≤ 1 (initially uncompetitive).

Standard errors are clustered at the country-product level.
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Figure B.21: Effect of IP on ln(RCA+ 10−3), Green vs. Non-Green Products, Control for the Third Lag

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The regressions additionally control for the third lag of ln(RCA+ 10−3) and ∆NonIP . Solid line is the estimated

percent change in RCA + 10−3. Dashed lines are 90% confidence intervals. Red lines correspond to non-green products

and green lines correspond to green products. Standard errors are clustered at the country-product level. The list of green

products is described in Section 2.1.4.

(a) Domestic Subsidies (b) Export Incentives

Figure B.22: Effect of IP on ln(RCA + 10−3), by Policy Instrument, Control for the Third Lag

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The regressions additionally control for the third lag of ln(RCA+ 10−3) and ∆NonIP . Solid line is the estimated

percent change in RCA+ 10−3 for domestic subsidies (Panel (a)) and export incentives (Panel (b)). Dashed lines are 90%

confidence intervals. Standard errors are clustered at the country-product level.
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F.4 Alternative RCA Measure Adjusted for Imports

Figure B.23: RCA Adjusted for Imports, All Products

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: RCA measure is adjusted for imports, such that ln(RCAexports +10−3)− ln(RCAimports +10−3). Solid line is the

estimated percent change in RCAexports+10−3

RCAimports+10−3 . Dashed lines are 90% confidence intervals. Standard errors are clustered

at the country-product level.

Figure B.24: RCA Adjusted for Imports, Green vs. Non-Green Products

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: RCA measure is adjusted for imports, such that ln(RCAexports + 10−3) − ln(RCAimports + 10−3). Solid line is

the estimated percent change in RCAexports+10−3

RCAimports+10−3 . Dashed lines are 90% confidence intervals. Red lines correspond to

non-green products and green lines correspond to green products. Standard errors are clustered at the country-product

level. The list of green products is described in Section 2.1.4.
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(a) Domestic Subsidies (b) Export Incentives

Figure B.25: RCA Adjusted for Imports, by Policy Instrument

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: RCA measure is adjusted for imports, such that ln(RCAexports + 10−3) − ln(RCAimports + 10−3). Solid line is

the estimated percent change in RCAexports+10−3

RCAimports+10−3 for domestic subsidies (Panel (a)) and export incentives (Panel (b)).

Dashed lines are 90% confidence intervals. Standard errors are clustered at the country-product level.
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F.5 Using ln(RCA+ 1) as Dependent Variable

Figure B.26: Effect of IP on ln(RCA + 1), All Products

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: Solid line is the estimated percent change in RCA+ 1. Dashed lines are 90% confidence intervals. Standard errors

are clustered at the country-product level.

Figure B.27: Effect of IP on ln(RCA + 1), by Initial RCA

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: Solid line is the estimated percent change inRCA+1. Dashed lines are 90% confidence intervals. Red lines correspond

to products withRCAc,p,t−1 > 1 (initially competitive) and blue lines correspond to products withRCAc,p,t−1 ≤ 1 (initially

uncompetitive). Standard errors are clustered at the country-product level.
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Figure B.28: Effect of IP on ln(RCA + 1), Green vs. Non-Green Products

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: Solid line is the estimated percent change in RCA + 1. Dashed lines are 90% confidence intervals. Red lines

correspond to non-green products and green lines correspond to green products. Standard errors are clustered at the

country-product level. The list of green products is described in Section 2.1.4.

(a) Domestic Subsidies (b) Export Incentives

Figure B.29: Effect of IP on ln(RCA + 1), by Policy Instrument

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: Solid line is the estimated percent change in RCA+1 for domestic subsidies (Panel (a)) and export incentives (Panel

(b)). Dashed lines are 90% confidence intervals. Standard errors are clustered at the country-product level.
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F.6 Excluding Covid-19 Period

Figure B.30: Effect of IP on ln(RCA + 10−3), All Products, Excluding Covid-19 Period

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The clean sample excludes units treated in 2020. Solid line is the estimated percent change in RCA+10−3. Dashed

lines are 90% confidence intervals. Standard errors are clustered at the country-product level.

Figure B.31: Effect of IP on ln(RCA + 10−3), by Initial RCA, Excluding Covid-19 Period

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The clean sample excludes units treated in 2020. Solid line is the estimated percent change in RCA+10−3. Dashed

lines are 90% confidence intervals. Red lines correspond to products with RCAc,p,t−1 > 1 (initially competitive) and

blue lines correspond to products with RCAc,p,t−1 ≤ 1 (initially uncompetitive). Standard errors are clustered at the

country-product level.

57



Figure B.32: Effect of IP on ln(RCA+10−3), Green vs. Non-Green Products, Excluding Covid-19 Period

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The clean sample excludes units treated in 2020. Solid line is the estimated percent change in RCA+10−3. Dashed

lines are 90% confidence intervals. Red lines correspond to non-green products and green lines correspond to green products.

Standard errors are clustered at the country-product level. The list of green products is described in Section 2.1.4.

(a) Domestic Subsidies (b) Export Incentives

Figure B.33: Effect of IP on ln(RCA + 10−3), by Policy Instrument, Excluding Covid-19 Period

Sources: GTA (2022), Juhász et al. (2023), and author’s calculations.

Notes: The clean sample excludes units treated in 2020. Solid line is the estimated percent change in RCA + 10−3 for

domestic subsidies (Panel (a)) and export incentives (Panel (b)). Dashed lines are 90% confidence intervals. Standard

errors are clustered at the country-product level.
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F.7 All Subsidies in GTA

(a) RCA (b) RCA adjusting for Imports

Figure B.34: Effect of All GTA Subsidies on RCA

Sources: GTA (2022) and author’s calculations.

Notes: The clean sample excludes units treated in 2020. Solid line is the estimated percent change in RCA+ 10−3 for all

domestic subsidies (Panel (a)) and a similar analysis but adjusting RCA for imports (Panel (b)). Dashed lines are 90%

confidence intervals. Standard errors are clustered at the country-product level.
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